
198:538 Complexity of Computation Homework 4
Rutgers University, Spring 2007 due Tuesday 10 April

Instance checkers Suppose you have an algorithm that solves some difficult problem, but you
are not sure if the algorithm is correct. Ideally, you would want to first check the correctness of
the algorithm, then use it to solve the instance at hand. An instance checker is a procedure that
combines both these steps into one.

An instance checker for a decision problem L is a randomized polynomial-time algorithm I that
has oracle access to a candidate algorithm A for L and has the following behavior:

• For every A and every x, IA(x) outputs one of 0 (”reject”), 1 (”accept”), or ”fail”.

• If A(x) = L(x) for every x, then IA(x) = L(x) for every x. (If A is a good algorithm for L,
then IA always outputs the correct answer.)

• For every A and every x, Pr[IA(x) ∈ {L(x), ”fail”}] ≥ 3/4. (If A is not a good algorithm for
L, then with high probability IA either fails or outputs the correct answer.)

Similarly we can define instance checkers for search problems and counting problems.

Problem 1

In F2-matrix multiplication you are given two n × n matrices A,B over F2 and want to compute
the matrix product AB. The best known algorithm for matrix multiplication takes time Ω(n2.3).
Show that matrix multiplication has an instance checker that runs in time Õ(n2). (Assume you
have random access to the input.)

Hint: Check the answer by multiplying it with a random vector.

Problem 2

In this problem you investigate instance checkers for PSPACE-complete problems.

(a) Show that every PSPACE-complete decision problem has an instance checker.

Hint: Look at the interactive proof for PSPACE. The prover in this protocol can be realized
by a polynomial space machine. Let I play the role of the verifier and A play the role of the
prover.

(b) Let L be a PSPACE-complete decision problem. Show that there is a randomized algorithm
A for L with the following property. For every (not necessarily efficient) randomized algo-
rithm M that decides L and every input x, if M(x) halts within t steps, then A(x) halts

1

2

within pM (|x|, t) steps, where pM is some polynomial whose coefficients may depend on the
description of M but not on x or t.

Hint: Your algorithm A should run the instance checker for L, using candidate algorithms
M as the oracle.

Problem 3

In class we saw that the Hadamard code is locally testable. Local testability also applies to other
codes. Let’s fix a finite field F and parameters d, n, where d < |F|. The Reed-Muller code of
degree d encodes every polynomial p of degree d in n variables by the vector RMp ∈ F|F|n where
RMp(x1, . . . , xn) is the value of the polynomial p at the point (x1, . . . , xn) ∈ Fn.

The Reed-Muller code is locally testable: There exists a probabilistic algorithm A with oracle access
to a candidate encoding f that runs in time poly(n, d, |F|), makes poly(d, |F|) queries to the oracle,
and if Pr[Af accepts] ≥ 7/8, then f is 7/8-close to RMp for some polynomial p of degree d.

(a) Argue that the family of permanent polynomials is the unique family of polynomials p1, p2, . . .
that satisfies the system of equations

pn(xij)1≤i,j≤n =
n∑

k=1

x1k · pn−1(xij)1≤i,j≤n,i6=1,j 6=k

pn−1(xij)1≤i,j≤n−1 = pn(yij)1≤i,j≤n

where

yij =


xij , if 1 ≤ i, j ≤ n− 1,

1, if i = j = n,

0, otherwise.

and p1(x11) = x11.

(b) Using the local testability of the Reed-Muller code, show that the problem of computing the
permanent of an n× n matrix over fields F of size Θ(n2) has an instance checker.

Hint: Think of a good oracle as providing the Reed-Muller encoding of the permanent
polynomial. In addition to the fact that the Reed-Muller code is locally testable, you will
need to use the reconstruction algorithm for the permanent and the randomized algorithm
for polynomial identity testing.

