
CSCI 5170: Computational Complexity Lecture 9
The Chinese University of Hong Kong, Fall 2019

The million dollar question in computational complexity is “do all problems in NP have efficient
algorithms?” The conventional belief is “probably not”, but a proof is still lacking after more than
50 years of research. In the first few lectures we gave examples of computational hardness in some
restricted models of computation: decision trees, small depth circuits, and restricted branching
programs. If we could generalize these methods to prove that, for example, solving satsifiability of
3CNF formulas on n inputs requires circuits of size 2n

1/100
, we would have an example of an NP

problem that does not have small circuit families and so no efficient algorithms either.

There is an interesting explanation about why this seemingly promising approach has failed to
yield consequential results. The reason is that proofs of computational hardness are often learning
algorithms in disguise. The learning algorithm asks to see outputs of the circuit for inputs of its
choice and can then predict the value of the circuit at a previously unseen input. Many proofs
of computational hardness do in fact show that all functions computed by the circuit model in
question are efficiently learnable (in a precise sense that we will define shortly).

On the other hand, it is widely believed that there exist efficiently computable functions that are
not efficiently learnable. Such functions are called pseudorandom functions and can be constructed
from sufficiently strong pseudorandom generators. So if there was a proof that 3SAT on n inputs
requires circuits of size 2n

1/100
, either this proof would look very different from, say, the proof that

parity on n bits requires depth 3 circuits of size 2n
1/3

, or else pseudorandom functions do not exist,
everything is learnable efficiently, and there is no cryptography.

1 Smallness and constructivity

The circuit lower bounds we proved in the first few lectures all followed the same basic pattern.
First we specified a property that all functions in the circuit class must have. Then we argued that
the hard function does not have this property.

For example, to show that PARITY on n inputs requires a decision tree of depth d = n/2, we used
the following property of depth d decision trees: After fixing some d of the variables to suitably
chosen values the function computed by the decision tree becomes a constant. PARITY does not
have this property.

To show that PARITY requires decision trees of size s = 2Ω(n), we used the fact that after applying
a 1/2-random restriction a size s decision tree reduces to a depth less than d with probability at
least s · (3/4)d. Setting d to equal n/2 reduces the problem of lower bounding the size to the solved
problem of lower bounding the depth.

Smallness The property “f : {0, 1}n → {0, 1} does not become a constant after fixing a random
half of its inputs to random fixed values”, which we denote by P (f), certainly applies to the parity
function, but it also applies (with high probability) to a random function R: After fixing half the
inputs R is a random function of the remaining n/2 inputs, and the probability that this function

is a constant is as small as 2−2n/2
. So our proof that parity requires size 2Ω(n) decision trees also

proves that most functions on n inputs require size 2Ω(n) decision trees. Such properties are called
small since they are shared by a tiny fraction of all functions.

Definition 1. A property P of boolean functions f : {0, 1}n → {0, 1} is δ-small if the probability

1

that a random function satisfies P is at most δ.

Think of δ as a small constant like 1/3. The proof that PARITY on n bits requires depth d

circuits of size 2Ω(n1/(d−1)) from Lecture 2 relied on a similar property: After restricting all but
n/(K log s)d−1 inputs in a size s, depth d circuit, the circuit becomes a constant with constant
probability. A calculation similar to the one we just did shows that the property “becomes constant
after randomly restricting, say, n− 10 inputs” is 2−10-small. So the same proof shows that random
functions require depth d circuits of size 2Ω(n1/(d−1)).

The proof that MAJORITY on n inputs requires depth-d circuits of size 2Ω(n1/2d) relied on the
property that a size-s depth-d circuit can be approximated by a {0, 1}-valued polynomial of degree
at most D = (logO(s))d within constant error (say 1/16). We can argue that when D is not too
large a random function is unlikely to have this property. By a counting argument similar to the
one in lecture 2 the total number of functions of the form (degree-D polynomial) + (small error ε)
on n bits is at most 2(H(D/n)+H(ε))·2n , which (even when D is quite large) is much smaller than the
total number of functions 22n . In conclusion, the property “can be approximated by a degree-D
polynomial with error 1/16 is small.

The proof that the inner product modulo 2 function on 2n bits requires read-k-times randomized
branching programs of width w = Ω(2n/2k) relied on the following property: For every function
f : {0, 1}n×{0, 1}n → {0, 1} computable by a width w, read-k-times randomized branching program
there exist set X and Y such that |X| · |Y | ≥ 22n/2w2k such that f is constant on a 2/3 fraction of
entries in X × Y (assuming error 1/3). We then argued that the inner product function does not
have this property as long as |X| · |Y | is larger than 2n by a constant factor. It is again possible to
show that the property “is almost constant on X × Y for every X,Y such that |X| · |Y | ≥ K” for
say K = 100 · 2n is small. You will work this out in the homework.

To summarize, all of the lower bound proofs we saw followed the same pattern: We described some
property of functions, showed that it holds for all functions computed by small circuits, and then
argued that it does not hold for the hard function in question. It also happens that the property
does not hold for most functions, so the proof also shows that random functions are hard for the
model in question. This is not surprising as we know by a counting argument that most functions
should in fact be hard for any “reasonable” circuit model. It can be proved that any property
based on a “formal complexity measure” — a concept we won’t define — is small as long as it is
not satisfied by all functions.

Constructivity Constructivity postulates that the relevant lower bound property is efficiently
computable: A relatively small circuit that can evaluate the function f : {0, 1}n → {0, 1} at inputs
of its choice can determine if the property holds or not.

Such circuits are called oracle circuits. Instead (or in addition to) taking an actual input, oracle
circuits access their output by special oracle gates with n input wires and one output wire that,
when given input x, output f(x). Oracle gates count towards the size of the circuit. The execution
of an oracle circuit Cf (a circuit C that is given oracle access to the function f) can be modeled as
a decision tree whose input is the 2n-bit long string of values f(x) as x ranges over all 2n inputs.
The depth of the decision tree is then the maximum number of oracle gates on any input-output
path in the circuit.

Definition 2. A property P of boolean functions f : {0, 1}n → {0, 1} is S-constructive if P can be
tested by (randomized) oracle circuits of size at most S given the ability to evaluate f at inputs of
its choice.

It turns out (for not completely understood reasons) that properties behind proofs of Boolean circuit

2

lower boudns are 2O(n)-constructive. (The “input” f is a 2n-bit long string, so “2O(n)-efficient” is
polynomial in the input length.)

Let’s consider the example of decision trees and small-depth AND/OR circuits first. The relevant
property “f becomes constant after a random (n− t)-restriction” can be tested by a random circuit
of size about 2t. After picking a random restriction, the circuit has to evaluate the restricted
function on its 2t inputs and confirm that all values are equal.

The property behind the branching program lower bound is a bit more tricky. It is not clear that
“f is constant on a 2/3 fraction of entries of X × Y for some X,Y such that |X| · |Y | ≥ K” is
something that can be computed in size 2O(n) as it might require looking at all pairs of sets (X,Y)
of size (at least) K, of which there are 2O(n logK).

Let’s take a step back and remember how we proved that the inner product function has this
property. We derived it from the stronger statement that∣∣∣∑

x,y∈{0,1}n
p(x) · (−1)〈x,y〉 · q(y)

∣∣∣ ≤√ 2n

|X||Y |

where p and q are the probability mass functions of the uniform distributions on the sets X and Y .
The proof we gave in Lecture 3 in fact works not only for probability mass functions, but for any
two functions p and q of `2 norm 1/

√
|X| and 1/

√
|Y |, respectively. In fact, our argument from

Theorem 14 in Lecture 3 more generally proves that∣∣∣∑
x,y∈{0,1}n

p(x) · (−1)f(x,y) · q(y)
∣∣∣ ≤ 2n/2 ·

√∑
x∈{0,1}n

p(x)2 ·
√∑

x∈{0,1}n
q(x)2

for all functions p, q : {0, 1}n → R. This says that the largest singular value of the 2n × 2n matrix
F (x, y) = (−1)f(x,y) is at most 2n/2. Singular values of a 2n by 2n matrix are computable in time
polynomial in 2n, so stated in this way the property becomes 2O(n)-constructive.

To summarize, the property P (f) = “F (x, y) = (−1)f(x,y) has a singular value larger than 2αn”
is sufficient to prove that F requires read-k-times branching programs of width Ω(2αn/k). The
property P is constructive. It turns out that it is also large (although we won’t prove it): The
largest singular value of a random 2n × 2n ±1 matrix is O(2n/2) with high probability.

The property “f = p + e for a low-degree p and sparse e” behind the AND/OR/PARITY lower
bound might similarly not be constructive, but can be replaced by one that is both small and
constructive.

2 Pseudorandom Functions

To explain what a pseudorandom function is, we should say a bit more about (truly) random func-
tions. Such a function can be uniquely specified by listing all 2n values F (00 · · · 0), . . . , F (11 · · · 1).
Since there are two choices for each value F (x) there are 22n possible functions. A random function
R is a random variable whose distribution is uniform over this set of 22n possible functions.

A random function R can be chosen by sampling the 2n values R(00 · · · 0), . . . , R(11 · · · 1) as uniform
and independent random bits. This gives a natural implementation of R by a randomized program:
The program first samples and stores 2n random bits. Then on input x it outputs the x-th value in
its memory. In the circuit model, an implementation of a random function {0, 1}2 → {0, 1} might
look like this: On input x1x2 and randomness r1r2r3r4, output

(x1 and x2 and r1) or (x1 and x2 and r2) or (x1 and x2 and r3) or (x1 and x2 and r4).

3

This type of implementation scales exponentially in n. Intuitively this should be unavoidable
because any implementation of R must store 2n independent random values r1, . . . r2n . In the
circuit model this can be made precise: Any randomized circuit that implements a random function
must have size exponential in n.1 In fact, any circuit of substantially smaller size must compute a
function that is statistically very far from a truly random function.

A pseudorandom function is a randomized function P that is “indistinguishable from random” but
is computable by small randomized circuit. What does it mean for a function to be indistinguishable
from random? Since a function is completely described by listing its values, we would like to say
that the lists

(P (00 · · · 0), P (00 · · · 1), . . . , P (11 · · · 1)) and (R(00 · · · 0), R(00 · · · 1), . . . , R(11 · · · 1))

are computationally indistinguishable. This and more will be true under the following definition of
indistinguishability by oracle circuits.

Definition 3. A randomized function P : {0, 1}n → {0, 1}m is an (S, ε)-pseudorandom function if
for every oracle circuit D of size at most S, Pr[DP = 1] − Pr[DR = 1] is at most ε, where R is a
random function from {0, 1}n → {0, 1}m.

We will use this definition with m = 1, but the generality will be helpful for constructing pseudo-
random functions.

The aim is to implement a pseudorandom function P by an efficient (randomized) circuit C. Recall
that C takes two types of inputs: The input x ∈ {0, 1}n and its internal randomness K ∈ {0, 1}k,
which is called the key of the pseudorandom function. Different values of the key K give rise to
different functions P (x) = PK(x) = C(K,x). The key K ∼ {0, 1}k is chosen at random but it is
kept secret from the distinguisher: The distinguisher can ask to see values PK(x) on inputs x of
its choice but it has no information about the choice of K beyond what it can deduce from these
values.

3 Pseudorandom functions and natural proofs

Pseudorandom functions P that are computable by circuits of size polynomial in n are believed to
exist for every n. We will next show how such functions can be constructed from sufficiently strong
pseudorandom generators.

On the other hand, if polynomial-size circuits satisfy some property P that is both large and
constructive, then they cannot compute pseudorandom functions:

Theorem 4. If all functions f : {0, 1}n → {0, 1} in some class C satisfy some (possibly randomized)
property that is δ-small and S-constructive with probability at least 1 − δ then C cannot compute
(S, 1− 2δ)-pseudorandom functions.

Proof. Let D be a circuit computing then property in question. By smallness Pr[DR = 1] ≤ δ.
Since all functions in C have the property with probability 1 − δ, for any distribution on F in C,
Pr[DP = 1] ≥ 1− δ. So

PrF [DP = 1]− Pr[DR = 1] ≥ 1− 2δ.

Since the property is computable by size-S circuits S, C cannot compute (S, 1− 2δ)-pseudorandom
functions.

1We are talking about stateless implementations: Once the randomness is fixed the function is determined.

4

In the next section we show how to construct a (s,
√
sε) pseudorandom function P : {0, 1}n → {0, 1}

from a (s, ε)-pseudorandom generator G. If, for example, s = 2k/2 and ε = 2−k/2 we get a
(2k/4, 2−k/4)-pseudorandom function P from a (2k/2, 2−k/2)-pseudorandom generator G. Therefore
efficient pseudorandom functions quite plausibly exist, and so it is unlikely that natural proofs can
succeed in proving circuit lower bounds against general polynomial-size circuits.

4 How to Construct Pseudorandom Functions

A pseudorandom function PK can in particular be viewed as a pseudorandom generator: The
seed is the key K ∈ {0, 1}k and the output can be the list of any say 2k distinct evaluations
(PK(x1), . . . , PK(x2k)). By Definition 3 this is indistinguishable from a uniform random string of
length 2k.

It is remarkable that the following converse is also true: Any pseudorandom generator can be used
to implement a pseudorandom function with arbitrarily long inputs. We will show this by induction
on the input length n of the pseudorandom function.

We assume that the generator G : {0, 1}k → {0, 1}` is length-doubling, i.e. ` = 2k. This can be
achieved by the stretch-extension procedure from Lecture 2. Such a generator can be viewed as a
pseudorandom function P1 with one bit of input and k bits of output: The values P (0) and P (1)
are the k left bits G0(K) and the k right bits G1(K) of G respectively, namely

P (b) = Gb(K), b ∈ {0, 1},

providing a base case for the induction.

Now suppose we have constructed a pseudorandom function P with n− 1 bits of input (and k bits
of output). Extending the input of P by one bit amounts to “stretching” the 2n−1 values P (x)
to 2n pseudorandom values P ′(y), where P ′ has n bits of input. This can be done with another
another application of G:

P ′(bx) = Gb(P (x)), x ∈ {0, 1}n−1, b ∈ {0, 1}. (1)

Unwinding this inductive definition gives the following construction for any input length n.

The Goldreich-Goldwasser-Micali (GGM) pseudorandom function:

P (x1x2 . . . xn) = Gx1(Gx2(· · · (Gxn(K) · · ·)).

We will prove that P is a pseudorandom function by induction on n. The key is understanding the
effect of transformation (1).

Lemma 5. If P is an (s, q, ε)-pseudorandom function and G is an (s+q(t+O(k)), ε′)-pseudorandom
generator of size t then P ′ is an (s−O((n+ k)q2), q, ε+ qε′)-pseudorandom function.

The additional parameter q here refers to the number of oracle queries that the distinguisher makes:
“(s, q, ε)-indistinguishable” means indistinguishable with advantage at most ε by a circuit of size at
most s that makes at most q oracle queries. The number of queries can never exceed the circuit size,
so q is by default upper bounded by s. This parameter plays an important role in the induction so
it will be useful to track it separately from the size.

For the proof of correctness it is helpful to introduce the following concept. The view of an oracle
ciruit CF is the sequence of values (F (x1), F (x2), . . . , F (xq)) that C receives in response to its
queries x1, . . . , xq issued to F .

5

To prove that P ′ = Gb ◦ P is a pseudorandom function we need to compare the view of the
distinguisher D′ interacting with P ′ to the view of D′ interacting with a truly random function
R′ : {0, 1}n → {0, 1}k. To do this we’ll look at the hybrid function Gb ◦ R where R : {0, 1}n−1 →
{0, 1}k is a truly random function.

Claim 6. If P is (s, q, ε)-pseudorandom then Gb ◦ P and Gb ◦ R are (s − q(t + O(k)), q, ε)-
indistinguishable.

Proof. A distinguisher D that tells Gb ◦ P from Gb ◦R can be turned into a distinguisher D′ that
tells P from R by applying Gb to every query. More precisely, D′ simulates D. Whenever D makes
query y = bx to its oracle, D′ makes query x to its oracle applies Gb to the answer. The view D′F

is identical to the view DGb◦F for any F , so D has the same distinguishing advantage as D′ on the
relevant oracles. The circuit D has to do all the work that D′ does plus q additional evaluations of
G and O(k) extra work to select the correct half Gb so its size is larger by q(t+O(k)).

Claim 7. If G is an (s′, ε′)-pseudorandom generator then Gb ◦ R is an (s′ − O((n+ k)q2), q, qε′)-
pseudorandom function.

To gain intuition about Claim 7 take n = 2 and consider a distinguisher that queries its oracle F at
000, 101, and 011. When F = Gb ◦R, the distinguisher sees the values G0(R(00)), G1(R(01)) and
G0(R(11)). Since R(00), R(01), and R(11) are independent random values this is like seeing (part
of) the output of three independent copies of G, which we would also expect to be pseudorandom.
Here is a useful composition lemma that captures this intuition.

Lemma 8. Let X1, . . . , Xq and Y1, . . . , Yq be independent random variables. If Xi and Yi are
(s, ε)-indistinguishable for every i then (X1, . . . , Xq) and (Y1, . . . , Yq) are (s, qε)-indistinguishable.

Before we do the proof of Claim 7 let’s consider another example. Suppose the distinguisher now
queries its oracle at 000, 101, and 100. The first and third value returned by Gb ◦R are no longer
independent: They are evaluations of the left and right half of G on the same seed 00. It would be
convenient if we could forbid the distinguisher from making sequences of queries of this type. This
can be achieved by forcing the distinguisher to make the queries in pairs 0x, 1x. If the distinguisher
wants to know F (bx), we ask it to remember both F (0x) and F (1x) for future reference. The view
of such a distinguisher will always look like the sequence

F (0x1), F (1x1), F (0x2), F (1x2), . . . , F (0xq), F (1xq) (2)

with x1, . . . , xq all distinct.

Proof. Assume D distinguishes Gb◦R from a random function R′. We convert D into a distinguisher
D∗ that operates as follows: Whenever D queries its oracle at bx, D∗ checks if it has made this
query before and if so it returns its previous answer. If not, it queries its oracle at both 0x and 1x
and uses the relevant answer. D∗ is larger than D by O((n + k)q2) gates, which is the amount of
circuit hardware it takes to implement the memorization of previous queries and answers.2

The view of D∗ looks like sequence (2). When F = Gb ◦ R this is a sequence of q independent
outputs of G, while when F = R′ these are q independent random strings. By Lemma 8, if D∗’s
distinguishing advantage is qε′ then the output of G is not (s′, ε′)-pseudorandom.

2In more reasonable models of computations like RAM programs D∗ would be more efficient and the loss in
security would be lower.

6

To prove Lemma 5 we combine the two claims, setting s′ to s+ q(t+O(k)) (this will turn out to be
a convenient choice). We now apply the lemma inductively. Assume G is an (s+ q(t+ O(k)), ε′)-
pseudorandom generator. When n = 1, by Claim 7 the function P is (s − O((1 + k)q2), q, qε′)-
pseudorandom. Applying Lemma 5 we get that when n = 2, P is (s − O(1 + 2 + 2k)q2, q, 2qε′)-
pseudorandom. Continuing this argument inductively, we conclude that for general n, P is (s −
O(n(n+ k)q2), q, nqε′)-pseudorandom. After renaming parameters we obtain the main theorem of
this lecture.

Theorem 9. If G is an (s, ε)-pseudorandom generator then the GGM function is an (s − qt −
O((n(n+ k)q2), q, nqε)-pseudorandom function.

What does this mean? To get a sense let’s ignore the contribution of the terms n, k, t of “polynomial”
magnitude. If we set q to a bit below

√
s then we get that P is about (s,

√
s,
√
sε)-pseudorandom.

Since the number of queries never exceeds circuit size, P is in particular (
√
s,
√
sε)-pseudorandom

as promised.

While this level of security is quite reasonable, one weakness of the GGM construction is its ef-
ficiency: To calculate an output of P one needs to make n sequential calls to G. Natural proofs
show that this is in some sense unavoidable: If a function family can be implemented in a parallel
model of computation like bounded-depth circuits with AND/OR and possibly PARITY gates then
it cannot be pseudorandom by Theorem 4.

Proof of Lemma 8. To keep the notation simple let’s prove it for q = 2. Assume that some D of
size at most s distinguishes (X1, X2) and (Y1, Y2) with advantage more than 2ε. Then D must
distinguish (X1, X2) and (X1, Y2) or it must distinguish (X1, Y2) and (Y1, Y2) with advantage more
than ε. The two cases are completely analogous so we focus on the first one. The bits X1 can be
fixed to the value that maximizes the advantage of D, giving a distinguisher of size s between X2

and Y2. More formally, if

Pr[D(X1, X2) = 1]− Pr[D(X1, Y2) = 1] > ε

then by averaging

EX1

[
PrX2 [D(X1, X2) = 1]− PrY2 [D(X1, Y2) = 1]

]
> ε

so there must be some particular choice X1 = x1 for which D(x1, ·) distinguishes X2 from Y2.

5 Natural properties and efficient learning

By the equivalence between distinguishing and prediction from the last lecture, the ability to
distinguish a function f from a random one implies the ability to predict f at a previously unseen
value. Instead of proving a general theorem let us illustrate this with an example. Suppose that
f is computable by a small-depth circuit. Then f is likely to become constant under a random
restriction, that is f |ρ(x) = f |ρ(x′) for most random restrictions ρ and a random pair of inputs x
and x′. If we call y and y′ the inputs to f that restrict to x and x′ under ρ, then the value f(y′)
can be predicted from the value f(y): Most of the time they are the same.

In contrast, a pseudorandom function cannot be learned, not by lack of information, but because
of limitations in computational power. In the model of probably approximately correct (PAC)
learning, a learning algorithm can observe input-output samples of the form (x, f(x)), where f is
some efficient but unknown function. For example, f could be the “circuit of the mind” that takes
as input some visual scene x and outputs 1 if x has a dog in it. The objective of the learning

7

algorithm is, after being trained on some sequence of samples (x1, f(x1)), . . . , (xq, f(xq)), to make
a prediction for f(x) on some previously unseen sample x.

We can model this learning process as a game in which the following type of learner L interacts
with an unknown concept f :

Training phase:
Query sample x1. Receive example f(x1).
Query sample x2. Receive example f(x2).

...
Query sample xq. Receive example f(xq).

Prediction phase:
Choose test sample x different from x1 up to xq.
Output a prediction y for f(x).

The learner succeeds if y equals f(x). This is an extremely weak notion of learning: Not only does
the learner get to choose which examples to see, but she also chooses what to be tested on (as long
as she doesn’t get to see the exam question beforehand)!

Theorem 10. Assume PK : {0, 1}n → {0, 1} is an (s, q + 1, ε)-pseudorandom function. For every
learner L of size at most s there is a key K such that LPK succeeds with probability at most 1/2+ε.

In words, the learner cannot do any better at passing the test than guessing the answer at random!

Proof. We prove the contrapositive. Suppose LPK succeeds with probability 1/2 for every K. Then
it succeeds with this probability for a random K. Let D be a distinguisher that simulates L, making
the same q training queries, but then makes one more query at x and outputs L’s exam grade: 1
if y = f(x) and 0 if not. The accepting probability of DP then equals the probability that LP

succeeds, which is 1/2 + ε. On the other hand, if R is a truly random function, the value R(x)
is independent of everything the learner has seen, so it is independent of his prediction y. The
probability that they are equal is exactly 1/2, so DR outputs 1 with probability exactly 1/2. It
follows that D distinguishes P and R, so P is not pseudorandom.

References

Natural proofs were introduced and studied by Razborov and Rudich. Their paper contains an
extensive study of all Boolean circuit lower bounds proved before 1995 and shows they all rely on
constructive and small properties. Theorem 9 was proved by Goldreich, Goldwasser, and Micali.

8

	Smallness and constructivity
	Pseudorandom Functions
	Pseudorandom functions and natural proofs
	How to Construct Pseudorandom Functions
	Natural properties and efficient learning

