
CSCI 5170: Computational Complexity Lecture 8
The Chinese University of Hong Kong, Fall 2019

A pseudorandom generator is an efficient deterministic algorithm or circuit that takes a short
uniformly random seed as its input and produces a longer output that looks indistinguishable from
a uniformly random string of the same length to all efficient “adversaries” that do not know the
seed. More formally,

Definition 1. Two distributions X and Y are ε-indistinguishable by size S circuits if for all circuits
of size at most S, |Pr[D(X) = 1]− Pr[D(Y) = 1]| < ε.

Definition 2. A function G : {0, 1}k → {0, 1}m, where k < m is an ε-pseudorandom generator
against size S circuits if the distribution G(s) where s ∼ Bk is uniform is ε-indistinguishable from
the uniform distribution on {0, 1}m by size S circuits.

The circuit D is called a distinguisher, and the difference between the two probabilities is called the
advantage of D. Since the output of a pseudorandom generator is longer than its input, its output
is statistically distinguishable from a uniformly random string: The distinguisher that outputs 1
on input y if y = G(s) for some s and 0 otherwise has advantage at least 1− 2k−m. However this
distinguisher may in general be very large. What makes this concept interesting is the requirement
that the two distributions are not distinguishable efficiently.

The notion of efficient indistinguishability is a very strong one: It implies that no single bit is
substantially biased, no pair of bits are substantially correlated, the majority of any odd number of
bits is close to unbiased, if the string is interpreted as the adjacency matrix of the graph then the
graph has no sparse cut, and so on, as all these conditions can be verified by efficient distinguishers.

There are two types of pseudorandom generators depending of the relative computational power
of the generator and the distinguisher. Pseudorandom generators that are more complex than
their distinguishers have applications to the deterministic simulation of randomized algorithms and
proofs. Generators that are pseudorandom even against distinguishers of higher relative complexity
are a central object in cryptography. The existence of both types of pseudorandom generators turns
out to be closely related to questions about average-case hardness.

1 Simulating randomness

Here is a possible strategy for deterministically simulating efficient randomized algorithms for de-
cision problems, such as the algorithm for polynomial identity testing. Suppose that we have a
decision problem f , a randomized algorithm A, and an input x ∈ {0, 1}n such that A solves f on
x with a clear majority, namely

Prr∼{0,1}m [A(x, r) = f(x)] ≥ 2/3

where m is the amount of randomness used by the algorithm on inputs of length n. If A runs in
time t(n) on inputs of length n then there is a circuit Cx of size O(t(n)2) such that

Prr∼{0,1}m [Cx(r) = f(x)] ≥ 2/3.

Now if G : {0, 1}k → {0, 1}m was a, say, 1/6-pseudorandom generator against size O(t(n)2) circuits
then∣∣Prs∼{0,1}k [Cx(G(s)) = f(x)]− Prr∼{0,1}m [Cx(r) = f(x)]

∣∣
=

∣∣Prs∼{0,1}k [Cx(G(s)) = 1]− Prr∼{0,1}m [Cx(r) = 1]
∣∣ < 1/6

1

so in particular

Prs∼{0,1}k [A(x,G(s)) = f(x)] = Prs∼{0,1}k [Cx(G(s)) = f(x)] > 2/3− 1/6 = 1/2.

We can now simulate A on input x deterministically by enumerating all possible outputs of G(s)
and observing what fraction of the time A(x,G(s)) accepts. If A were to accept, a majority of the
outputs G(s) should yield accepting computations; if A were to reject, the majority of them should
yield rejecting computations. If the output of G can be computed in time t′ then the simulation
takes time O(2k(t(n) + t′(m)). If A was a polynomial-time algorithm we can design G so that t′

grows at most polynomially in m and k grows at most logarithmically in m, then we would obtain
a deterministic polynomial time algorithm that simulates A on all inputs correctly decided by it
with probability at least 2/3, in particular implying that P = BPP.

2 Average-case complexity, prediction, and distinguishing

One criticism of the theory of NP-completeness that we saw last time is that it measures computa-
tional hardness in terms of the worst-case running time of algorithms over all inputs of a given size.
Sometimes it is more relevant how algorithms behave on “typical” inputs. Average-case complexity
assumes that inputs come from some probability distribution and algorithms are allowed to err with
some small probability over the choice of input. Two types of algorithms that fit nicely into this
setting are learning algorithms (whose inputs consist of training examples, which are sometimes
modeled as independent samples from some distribution) and cryptographic adversaries (whose
success is determined by how likely they are to break a random execution of the system).

For our purposes it is enough to consider decision problems in the circuit model of computation, so
we consider functions f : {0, 1}n → {0, 1} for fixed n. In average-case complexity the inputs come
from some distribution D and we are interested in computing the result correctly for “most” inputs
sampled from D.

Definition 3. A predictor for f under distribution D with advantage ε is a circuit P for which
Pr[P (x) = f(x)] ≥ (1 + ε)/2 when x is sampled from D.

When ε = 1, “predicting f” is the same as “computing f”. When ε = 0, f can be predicted by
one of the constants 0 or 1, whichever one covers more than half the inputs under D. Average-case
complexity is concerned with the regime between these two extremes.

All of the examples of hard functions we saw in restricted computational models like PARITY for
constant-depth AND/OR circuits, MAJORITY for constant depth AND/OR/PARITY circuits,
EQUALITY for read-once branching programs are in fact hard to predict with any constant
advantage (assuming the the input size n is sufficiently large).

As for general circuits, it can be shown by a counting argument that at most a 22
δn

fraction of
all functions are predicatable with advantage 2−δn by circuits of size 2δn for some constant δ > 0
(I think δ = 1/8 is good enough). So functions that are very hard to predict certainly exist. We
would be hard pressed to find any explicit functions say in the class NP that are hard to predict,
because proving a function is hard to predict is only harder than proving it is hard to compute,
which would resolve the P 6= NP question. Despite the lack of provably hard candidates there are
examples of functions that are believed to be hard to predict. We’ll have more to say about this
later.

What we will show for now is that “hardness of prediction” is equivalent to a weak form of pseu-
dorandomness:

2

Lemma 4. If f is ε-unpredictable, then the function G : {0, 1}k → {0, 1}k+1 given by G(s) =
(s, f(s)) is ε-pseudorandom against size S −O(1).

Conversely, if G is ε-pseudorandom against size S then f is ε/2-unpredictable against size S−O(1).

Proof. Assume D is a circuit such that∣∣Pr[D(s, f(s)) = 1]− Pr[D(s, b) = 1]
∣∣ ≥ ε.

Here, s is chosen randomly from {0, 1}k and b is a random bit independent of s. We will use D to
construct another circuit C with only O(1) more gates that computes f with probability 1/2 + ε.
By assumption, C must then have size more than S so D has size more than S −O(1).

First we get rid of the absolute value. By possibly replacing the circuit D by not D, we may
assume without loss of generality that

Pr[D(s, f(s)) = 1]− Pr[D(s, b) = 1] ≥ ε. (1)

Now consider the following circuit C:

C : On input s,
Choose b ∼ {0, 1} at random

If D(s, b) = 1, output b
Otherwise output a random value in {0, 1}.

Since the events D(s, b) = 0 and D(s, b) = 1 are disjoint, we can write

Pr[C(s) = f(s)] = Pr[D(s, b) = 1 and b = f(s)] + 1
2 · Pr[D(s, b) = 0]

= Pr[D(s, f(s)) = 1 and b = f(s)] + 1
2 · Pr[D(s, b) = 0]

= 1
2 Pr[D(s, f(s)) = 1] + 1

2 · Pr[D(s, b) = 0]

= 1
2 + 1

2 Pr[D(s, f(s)) = 1]− 1
2 · Pr[D(s, b) = 1]

≥ 1/2 + ε/2.

This pseudorandom generator gives us one additional bit of pseudorandomness beyond what is
contained in the seed. We now show how to get more bits using a more elaborate construction.

3 The Nisan-Wigderson generator

We can now state the transformation from hard functions into pseudorandom generators. We
will say that a family Gm : {0, 1}k(m) → {0, 1}m of pseudorandom generators is polynomial-time
computable if there is an algorithm that on input s ∈ {0, 1}k(m) runs in time polynomial in m (the
output length of Gm) and outputs Gm(s).

Theorem 5. For every polynomial S and every constant δ > 0 the following holds. Suppose
there is a decision problem f that can be decided in time 2O(t) on all inputs of length t, but is
unpredictable with advantage 2−δt/2 by circuits of size O(2δt) with respect to the uniform distribution
over {0, 1}t. Then there exists a polynomial-time computable family Gm : {0, 1}k(m) → {0, 1}m of
1/6-pseudorandom generators against circuits of size at most m = S(n).

3

Such hard problems f are believed to exist,

but I cannot think of any particularly natural candidate examples.

Let us first see how we can get two additional bits of pseudorandomness from Lemma 4: We run
the generator on two independent seeds s1 and s2. Namely, we let G′(s1, s2) = (G(s1), G(s2)). If
D is a distinguisher such that∣∣Pr[D(G′(s1, s2)) = 1]− Pr[D(y1, y2) = 1]

∣∣ ≥ ε
then it must be the case that∣∣Pr[D(G(s1), G(s2)) = 1]− Pr[D(G(s1), y2) = 1]

∣∣ ≥ ε/2
or

∣∣Pr[D(G(s1), y2) = 1]− Pr[D(y1, y2) = 1]
∣∣ ≥ ε/2

and in either case we can obtain a distinguisher D′ such that∣∣Pr[D′(G(s)) = 1]− Pr[D′(y) = 1]
∣∣ ≥ 1/2

by hardwiring the suitable input that maximizes the advantage into D. By repeating this construc-
tion using seeds s1, . . . , st we can obtain t(k + 1) pseudorandom bits out of a seed of length tk as
long as t is not too large (as the distinguishing advantage deteriorates in t.

To further shrink the seed length, we will allow parts of the strings s1, . . . , st to overlap. This
motivates the following definition.

Definition 6. A collection of sets T1, . . . , Tm ⊆ {1, . . . , k} is a combinatorial design with set size t
and intersection size t∩ if |Ti| = t for every i and |Ti ∩ Tj | ≤ t∩ for every i 6= j.

Given a combinatorial design, we define a pseudorandom generator G : {0, 1}k → {0, 1}m by

G(s) = (f(s|T1), . . . , f(s|Tm))

where f : {0, 1}t → {0, 1} is the “hard” function and s|T is the substring of s indexed by the
elements of the set T . For example, if s = s1s2s3s4, then s|{2,4} = s2s4. Combinatorial designs
with good parameters can be computed efficiently.

Claim 7. For every c > 0 there is a family of combinatorial designs with

k = 15c2 logm t = c logm t∩ = logm.

Moreover, there is a deterministic algorithm that on input 1m runs in time mO(c2) and outputs the
sets T1, . . . , Tm.

In particular, for every fixed c we have k = O(logm), so the seed size is exactly what we were
aiming for. Let’s now check that G can be computed efficiently (in time poly(m)). To compute
Gm, we first construct the design in time mO(c2). We then need to evaluate m copies of f , each
on an input of size t = c logm. Since we assumed that f is computable in time 2O(t) = mO(c), the
whole computation can be done in time polynomial in m.

It remains to show that Gm is 1/6-pseudorandom against circuits of every polynomial size S(n) for
a suitable choice of constants c and δ. Towards a contradiction, suppose that for some circuit C of
size S(n) we have

Prs∼{0,1}k [C(G(s)) = 1]− Prr∼{0,1}m [C(r) = 1] ≥ 1/6.

4

(As in the last proof, we can remove the absolute value without loss of generality.) Let’s expand
this definition:

Prs∼{0,1}k [C(f(s|T1), . . . , f(s|Tm)) = 1]− Prr1,...,rm∼{0,1}[C(r1, . . . , rm) = 1] ≥ 1/6. (2)

This formula does not appear all that useful. To see what is happening, we introduce of the following
way of “slowly” going from the pseudorandom distribution G(s) to the random distribution r: At
each step, we change one input of C from pseudorandom to random. If C can distinguish G(s)
from r, then at some step there must be a noticeable change in the behavior of C.

More formally, we consider the following sequence of hybrid distributions on inputs of C:

Dm : f(s|T1), . . . , f(s|Tm−1), f(s|Tm)
Dm−1 : f(s|T1), . . . , f(s|Tm−1), rm

...
...

...
D0 : r1, . . . , rm−1, rm.

These distributions are not “real”; we merely use them to help us in the analysis. Condition (2)
tells us that Prr∼Dm [C(r)]−Prr∼D0 [C(r)] ≥ 1/6. Then there must be some j between 1 and m for
which Prr∼Dj [C(r)]− Prr∼Dj−1 [C(r)] ≥ 1/6m, that is

Prs∼{0,1}k,rj+1,...,rm∼{0,1}[C(f(s|T1), . . . , f(s|Tj), . . . , rm) = 1]

− Prs∼{0,1}k,rj ,...,rm∼{0,1}[C(f(s|T1), . . . , rj , . . . , rm) = 1] ≥ 1/6m.

There must then exist a fixing of the values rj+1, . . . , rm that maximizes the above difference in
probabilities. If we hardwire this fixing into the circuit C, we obtain a circuit C1 of the same size
such that

Prs[C1(f(s|T1), . . . , f(s|Tj−1), f(s|Tj)) = 1]− Prs,rj [C1(f(s|T1), . . . , f(s|Tj−1), rj) = 1] ≥ 1/6m.

Let s′ = s|Tj (this is a string of length t). There is now a fixing of all the bits of s outside s′

that maximizes the above difference in probabilities. Let’s hardwire these bits into C1 and call the
resulting circuit C2. With respect to this fixing, for every i < j, f(s|Ti) becomes a function of at
most 10 logm bits in s′ (because s′ intersects s|Ti in at most t∩ = logm positions). Let’s call this
function gi(s

′). We then have

Prs′ [C2(g1(s
′), . . . , gj−1(s

′), f(s′)) = 1]− Prs′,rj [C2(g1(s
′), . . . , gj−1(s

′), rj) = 1] ≥ 1/6m.

Since each gi is a function of at most logm bits, it can be computed by a circuit of size O(2logm) =
O(m). If we compose the circuit C2 with the circuits for g1, . . . , gj−1, we obtain a single circuit C3

of size S(n) +O(jm) = S(n) +O(m2) such that

Prs′ [C3(s
′, f(s′)) = 1]− Prs′,rj [C3(s

′, rj) = 1] ≥ 1/6m.

In words, (s′, f(s′)) is not 1/6m-pseudorandom for size S(n) +O(m2); by Lemma 4 it follows that
there is a circuit C4 of size S(n) +O(m2) such that

Prs′ [C4(s
′) = f(s′)] ≥ 1/2 + 1/6m.

Recall that f is a function on t = c logm bits, so

Prs′ [C4(s
′) = f(s′)] ≥ 1/2 + 1/6 · 2−t/c

where C4 is a circuit of size S(n) +O(m2) = O(22t/c). If we choose δ = 2/c we obtain that C4 is a
circuit of size O(2δt) that predicts f with advantage 2−δt/2, contradicting the assumed hardness of
f .

5

Proof of Claim 7. The sets T1, . . . , Tm are chosen greedily: Ti is the first set of size t that has
intersection size at most t∩ with all sets Tj , j < i. The running time is dominated by the number

of possible choices for each set which is at most 2k = mO(c2).

We show that a choice of Ti with the desired properties is always possible by the probabilistic
method. The probability that the intersection between Ti and any fixed set Tj , j < i, both of size
t, exceeds size t∩ is at most(

t

t∩

)2

·
(t∩
k

)t∩
≤ (ec)2 logm · (15c2)− logm ≤ 1

m

so by a union bound, there must always exists a choice of Ti that has intersection less than t∩ with
T1 up to Ti−1.

4 Cryptographic pseudorandom generators

In the above constructions the time that it takes to compute the pseudorandom generator G is
inherently larger than the time it takes to evaluate the hard function f as G must evaluate one or
several copies of f . Therefore the complexity of computing G will be larger than the complexity of
distinguishing the output of G from a uniformly random string.

In cryptographic applications the pseudorandom generator is usually part of the system and the
distinguisher is the adversary that wants to break the system. It is usually assumed that the
adversary is willing to invest more resources into breaking the system than the honest parties use
to run it. In this setting generating even one additional bit of pseudorandomness beyond the seed
length is challenging.

Cryptographic pseudorandom generators can be obtained from a simpler object called a one-way
function. A one-way function is a function with multi-bit output that is easy to compute in the
worst-case, but hard to invert even on average.

Definition 8. A function f : {0, 1}n → {0, 1}m is (S, ε)-one way if for every circuit I of size at
most S, Prx∼{0,1}n [f(I(f(x)))) = f(x)] ≤ ε.

If P equals NP then the NP-search problem “given y find x such that y = f(x)” can be efficiently
solved, so proving the existence of one-way functions requires proving that P does not equal NP.
There are many conjectured examples of one-way functions, some with very simple structure. For
example, if m = n and every output bit of f is the majority of five randomly chosen input bits, f
might be one-way with high probability. (In contrast, if we take the parity of five bits f is not one-
way.) The following theorem says, which we won’t prove, says that cryptographic pseudorandom
generators can be obtained from one-way functions.

Theorem 9. For every function f : {0, 1}n → {0, 1}m computable by a circuit of size s there exists
a function G : {0, 1}k → {0, 1}k+1 computable by a circuit of size polynomial in s and n so that the
following holds: If f is (S, ε)-one-way then G is ε′-pseudorandom against size S′ circuits, where
S′ = S − poly(s, n) and ε′ = ε · poly(s, n).

Once one additional bit of pseudorandomness is obtained, it is possible to increase the length of the
output by applying the pseudorandom generator iteratively. Specifically, if G : {0, 1}k → {0, 1}k+1

is a pseudorandom generator, then we iteratively define G0(s) = s and

Gd+1(s) = (G(first k bits of Gd(s)), last d bits of Gd(s)).

Then we can prove the following by induction on d.

6

Lemma 10. If G can be computed by a circuit of size s and G is ε-pseudorandom against size S
circuits then Gd is dε-pseudorandom against size S − (d− 1)s circuits.

Proof. For contradiction, let us suppose that Gd+1 is not pseudorandom. So there exists a circuit
D of size S − ds such that

|Pr[D(Gd+1(s)) = 1]− Pr[D(y) = 1]| ≥ (d+ 1)ε.

Here, Y is a truly random string of length k+d+1. Now recall that Gd+1 was obtained by running
G on the first k bits of yd (the output of Gd) and copying the last d bits. Let xd = xLxR, where
XL are the first k bits and yR are the last d. Also let y = yLyR where yL are the first k + 1 bits
and YR are the last d bits. Then

|Pr[D(G(xL), xR) = 1]− Pr[D(yL, yR) = 1]| ≥ (d+ 1)ε.

Now let z be a uniform string of length k independent of y. At least one of these two inequalities
must hold:

|Pr[D(G(xL), xR) = 1]− Pr[D(G(z), yR) = 1]| ≥ dε or

|Pr[D(G(z), yR) = 1]− Pr[D(yL, yR) = 1]| ≥ ε.

Suppose the first inequality holds. Then we can distinguish x from a truly random string as follows:

Circuit D′: On input u, write u = uLuR (the first k and last d bits) and output
D(G(uL), uR).

This circuit D′ has size S − (d− 1)s and by the first inequality

|Pr[D′(xL, xR) = 1]− Pr[D′(z, yR) = 1]| = |Pr[D(G(xL), xR) = 1]− Pr[D(G(z), yR) = 1]| ≥ dε

so D′ distinguishes the output of Gd(s) from a random string with advantage dε, contradicting our
inductive assumption. So the second inequality must hold. But then we can distinguish the output
of G from random by the following circuit: On input u, choose a random string yR of length d and
output D(u, y). By the second inequality, this is a circuit of size S − ds+ d ≤ S that distinguishes
the output of G from random with advantage ε, contradicting the pseudorandomness of G.

7

	Simulating randomness
	Average-case complexity, prediction, and distinguishing
	The Nisan-Wigderson generator
	Cryptographic pseudorandom generators

