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Question 1

In Lecture 3 we showed that the inner product function IP (x, y) = x1y1 + · · ·+xnyn mod 2, where
x, y ∈ {0, 1}n takes the same value on more than 7/8 of the entries of any set of the form X × Y
where |X| · |Y | ≥ K · 2n for some constant K. In this question you will show that the same is true
with high probability for a random function R : {1, . . . , N} × {1, . . . , N} → {0, 1}, where N = 2n.

(a) Let Z1, . . . , ZM be a sequence of independent uniformly random coin tosses. Apply the
inequality

(
M
δM

)
≤ 2H(δ)·M and a union bound to show that the probability more than 7M/8

of the coins are heads is at most 2−M/4.

Solution: The probability that any 7M/8 specific Zi’s are heads is 2−7M/8. By a union
bound, the probability that there exists some set of 7M/8 heads is at most

(
M

7M/8

)
· 2−7M/8 ≤

2H(7/8)·)−7/8)M which is at most 2−M/4 as H(7/8)− 7/8 ≥ −0.33.

(b) Use part (a) to show that the probability R takes the same value on more than 7/8 of the
entries of some set of the form X × Y is at most 2−|X|·|Y |/4+1.

Solution: The values R(x, y) where x ∈ X and y ∈ Y are |X| · |Y | independent bits. By
part (a) the probability that a 7/8 fraction of them are zeros is at most 2−|X||Y |/4. The same
bound holds for ones. By a union bound the probability that a 7/8 fraction of values are
equal is at most 2−|X||Y |/4+1.

(c) Use part (b) and a union bound to show that a random function takes the same value on
more than 7/8 of the entries of some set X × Y with |X| · |Y | ≥ 9N with probability at most
2−Ω(N).

Solution: By part (b), assuming |X| · |Y | ≥ 9N , the probability of the event is at most
2−9N/4+1. There are at most 22N pairs of subsets X,Y . By a union bound the probability
that there exists a subset that has the property is at most 22N ·2−9N/4+1 = 2−N/4+1 = 2−Ω(N).

Question 2

Given an undirected graph G, let G2 be the graph whose vertices are ordered pairs of vertices in
G and whose edges are those pairs {(u, v), (u′, v′)} such that {u, u′} is an edge in G or u = u′, and
{v, v′} is an edge in G or v = v′.

(a) Show that if G has a clique of size k then G2 has a clique of size k2.

Solution: If S is the set of k vertices in G that forms a clique, then S2 = {(u, v) : u, v ∈ K}
is a set of k2 vertices that is a clique in G2.

(b) Show that if G2 has a clique of size K then G has a clique of size d
√
Ke.

Solution: Let T be a clique in G2 and U = {u : (u, v) ∈ T}, V = {v : (u, v) ∈ T} be its
projections to vertices in G. Then U and V are clique in G: If {(u, v), (u′, v′)} is an edge
in G2 then by the definition of G2 both (u, u′) and (v, v′) must be edges in G. Since T is
contained in the set U × V , it follows that |U | · |V | = |U × V | ≥ |T |. If T has size K then
either U or V must then have size at least d

√
Ke as desired.



(c) Use parts (a) and (b) to show that if there exists a polynomial-time algorithm that finds a
clique of size at least 1% of the size of the largest clique in a graph, then there is a polynomial-
time algorithm that finds a clique of size at least 99% the size of the largest clique.

Solution: Let A be an algorithm that finds a clique of size δ times the size of the largest
clique. The reduction R runs A on the graph G2 to obtain a clique T and outputs the larger
of the two sets U and V from part (b). This is a polynomial-time algorithm. By part (a), if
G has a clique of size k then G2 has a clique of size k2. By our assumption on A, T is then a
clique of size at least δ · k2. By part (b), the reduction outputs a clique in G of size at least√
δk2 = δ1/2 · k.

Composing R with itself 9 times, we obtain a polynomial-time reduction from finding a clique
of size δ1/29-fraction of the largest one to finding one of size δ-fraction of the largest one.
When δ = 1%, δ1/29 ≥ 99% as desired.

Question 3

A function f : {0, 1}n → {0, 1} is affine if it is of the form f(x) = 〈a, x〉+b for some a ∈ {0, 1}n and
b ∈ {0, 1}. It is δ-far from affine if every affine function differs from it on more than a δ-fraction
of inputs. The YES and NO instances of (1, 1− δ)-GAP-AFFINE are functions that are affine and
δ-far from affine, respectively.

(a) Let g(x, y) = f(x) + f(y). Show that if f is affine then g is linear.

Solution: g(x, y) = (〈a, x〉+ b) + (〈a, y〉+ b) = 〈a, x〉+ 〈a, y〉 = 〈(a, a), (x, y)〉.

(b) Show that if g is δ-close to linear then f is δ-close to affine. (Hint: Fix y.)

Solution: If Pr[g(x, y) = 〈a, x〉 + 〈b, y〉] ≤ δ, then the same inequality must hold for some
fixing of y = c that minimizes the left-hand side. It follows that Pr[f(x) + f(c) = 〈a, x〉 +
〈b, c〉] ≥ δ, so f(x) is δ-close to the affine function 〈a, x〉+ (〈b, c〉+ f(c)).

(c) Use part (a) and results from Lecture 11 to show that the one-sided randomized query com-
plexity of (1, 1− δ)-GAP-AFFINE with error 1− δ is at most 6.

Solution: The test chooses random inputs x, y, x′, y′ and accepts if f(x) + f(y) + f(x′) +
f(y′) = f(x + x′) + f(y + y′). If f is affine then by part (a) g is linear and the test accepts
with probability 1. By Claim 9 in Lecture 10, if the test accepts with probability 1− δ then
g is δ-close to linear. By part (b) f is then δ-close to affine.

(d) Show that for every three distinct points x, y, z ∈ {0, 1}n and values a, b, c ∈ {0, 1} there
exists an affine function f such that f(x) = a, f(y) = b, and f(z) = c.

Solution: First we argue that there is always a linear function consistent with two constraints
f(x) = a, f(y) = b where x, y are distinct and nonzero. There is always some index i for which
xi 6= yi. Without loss of generality assume xi = 1 and yi = 0. Let yj be any 1-input of y
and s ∈ {0, 1}n be a string with sj = b, si = a + bxj , and zero everywhere else. Then
〈s, x〉 = (a + bxj)xi + bxj = a and 〈s, y〉 = sjyj = b so the linear function f(u) = 〈s, u〉
satisfies both constraints.

For the problem at hand let g(u) = f(u + x) + a. By what we just proved there is a linear
function 〈s, u〉 such that g(y + x) = ips, y + x and g(z + x) = 〈s, z + x〉. Then the affine
function 〈s, u〉+ (〈s, x〉+ a) satisfies all three constraints f(x) = a, f(y) = b, and f(z) = c.



(e) Use part (b) to show that the one-sided randomized query complexity of (1, 1 − δ)-GAP-
AFFINE with any error less than one is at least 4.

Solution: Suppose there is an algorithm with query complexity 3 (or less). After querying
any three values x, y, z and receiving answers a, b, c a one-sided test must accept because there
is at least one function f such that f(x) = a, f(y) = b, and f(z) = c. Therefore the test
accepts all functions, including the ones that are δ-far from affine.


