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Question 1

In Lecture 3 we showed that the inner product function I P(z,y) = x1y1+- - -+ xny, mod 2, where
x,y € {0,1}" takes the same value on more than 7/8 of the entries of any set of the form X x Y
where |X|-|Y| > K - 2" for some constant K. In this question you will show that the same is true
with high probability for a random function R: {1,...,N} x {1,..., N} — {0,1}, where N = 2",

(a) Let Zi,...,Zy be a sequence of independent uniformly random coin tosses. Apply the
inequality ( 5]\]\44) < 2HO)-M and a union bound to show that the probability more than 7M /8
of the coins are heads is at most 2~ M/4,

Solution: The probability that any 7M/8 specific Z;’s are heads is 2-™M/8 By a union
bound, the probability that there exists some set of 7M /8 heads is at most ( M ) LQTTM/8 <

7M/8
2H(7/8))=T/9)M which is at most 2-M/* as H(7/8) — 7/8 > —0.33.

(b) Use part (a) to show that the probability R takes the same value on more than 7/8 of the
entries of some set of the form X x Y is at most 2~ IX/Y1/4+1,

Solution: The values R(z,y) where z € X and y € Y are |X| - |Y| independent bits. By
part (a) the probability that a 7/8 fraction of them are zeros is at most 2~ IXIY1/4 The same
bound holds for ones. By a union bound the probability that a 7/8 fraction of values are
equal is at most 27 1XIIY1/4+1

(¢) Use part (b) and a union bound to show that a random function takes the same value on

more than 7/8 of the entries of some set X x Y with | X|-|Y| > 9N with probability at most
2~ ),

Solution: By part (b), assuming |X| - |Y| > 9N, the probability of the event is at most
2-9N/4+1 There are at most 22V pairs of subsets X, Y. By a union bound the probability
that there exists a subset that has the property is at most 22V.279N/4+1 — 9=N/4+1 _ 9—Q(N),

Question 2

Given an undirected graph G, let G? be the graph whose vertices are ordered pairs of vertices in
G and whose edges are those pairs {(u,v), (u',v)} such that {u,u'} is an edge in G or u = v/, and
{v,v'} is an edge in G or v =/,

(a) Show that if G has a clique of size k then G? has a clique of size k.

Solution: If S is the set of k vertices in G that forms a clique, then S? = {(u,v): u,v € K}
is a set of k? vertices that is a clique in G2.

(b) Show that if G? has a clique of size K then G has a clique of size [V K].

Solution: Let T be a clique in G? and U = {u : (u,v) € T}, V = {v : (u,v) € T} be its
projections to vertices in G. Then U and V are clique in G: If {(u,v), («/,v')} is an edge
in G? then by the definition of G? both (u,v') and (v,v’) must be edges in G. Since T is
contained in the set U x V, it follows that |U|-|V| = |U x V| > |T|. If T has size K then
either U or V must then have size at least [v/K| as desired.



()

Use parts (a) and (b) to show that if there exists a polynomial-time algorithm that finds a
clique of size at least 1% of the size of the largest clique in a graph, then there is a polynomial-
time algorithm that finds a clique of size at least 99% the size of the largest clique.

Solution: Let A be an algorithm that finds a clique of size § times the size of the largest
clique. The reduction R runs A on the graph G2 to obtain a clique T and outputs the larger
of the two sets U and V from part (b). This is a polynomial-time algorithm. By part (a), if
G has a clique of size k then G? has a clique of size k2. By our assumption on A, T is then a
clique of size at least 6 - k2. By part (b), the reduction outputs a clique in G of size at least

Viok2 = §1/% - k.

Composing R with itself 9 times, we obtain a polynomial-time reduction from finding a clique
of size §'/2°-fraction of the largest one to finding one of size J-fraction of the largest one.
When § = 1%, §1/2° > 99% as desired.

Question 3

A function f: {0,1}"™ — {0, 1} is affine if it is of the form f(z) = (a,x) +b for some a € {0,1}" and
b€ {0,1}. It is o-far from affine if every affine function differs from it on more than a J-fraction
of inputs. The YES and NO instances of (1,1 —0)-GAP-AFFINE are functions that are affine and
0-far from affine, respectively.

(a)

(b)

Let g(z,y) = f(z) + f(y). Show that if f is affine then g is linear.

Solution: g(z,y) = ({a,z) +b) + ((a,y) +b) = (a,z) + (a,y) = ((a,a), (z,y)).
Show that if g is d-close to linear then f is d-close to affine. (Hint: Fix y.)

Solution: If Pr[g(z,y) = (a,z) + (b,y)] < J, then the same inequality must hold for some
fixing of y = ¢ that minimizes the left-hand side. It follows that Pr[f(x) 4+ f(c) = (a,x) +
(b,c)] > 0, so f(x) is d-close to the affine function (a,x) + ((b,c) + f(c)).

Use part (a) and results from Lecture 11 to show that the one-sided randomized query com-
plexity of (1,1 — §)-GAP-AFFINE with error 1 — ¢ is at most 6.

Solution: The test chooses random inputs z,y, 2,3’ and accepts if f(z) + f(y) + f(2') +
f@)=flx+2")+ fly+y). If fis affine then by part (a) g is linear and the test accepts
with probability 1. By Claim 9 in Lecture 10, if the test accepts with probability 1 — § then
g is 6-close to linear. By part (b) f is then d-close to affine.

Show that for every three distinct points z,y,z € {0,1}" and values a,b,c € {0,1} there
exists an affine function f such that f(z) =a, f(y) =b, and f(z) = c.

Solution: First we argue that there is always a linear function consistent with two constraints
f(z) = a, f(y) = b where z, y are distinct and nonzero. There is always some index ¢ for which
x; # y;. Without loss of generality assume z; = 1 and y; = 0. Let y; be any 1-input of y
and s € {0,1}" be a string with s; = b, s; = a + bz;, and zero everywhere else. Then
(s,z) = (a + bxj)r; + br; = a and (s,y) = s;jy; = b so the linear function f(u) = (s,u)
satisfies both constraints.

For the problem at hand let g(u) = f(u + x) 4+ a. By what we just proved there is a linear

function (s,u) such that g(y + z) = ips,y +x and g(z + =) = (s,z + ). Then the affine
function (s,u) + ({s,x) + a) satisfies all three constraints f(z) =a, f(y) =b, and f(2) = c.



(e) Use part (b) to show that the one-sided randomized query complexity of (1,1 — §)-GAP-
AFFINE with any error less than one is at least 4.

Solution: Suppose there is an algorithm with query complexity 3 (or less). After querying
any three values x, y, z and receiving answers a, b, ¢ a one-sided test must accept because there
is at least one function f such that f(x) = a, f(y) = b, and f(z) = c¢. Therefore the test
accepts all functions, including the ones that are d-far from affine.



