
CSCI 5170: Computational Complexity Homework 2 Solutions
The Chinese University of Hong Kong, Fall 2019

Please turn in your solution in class on Tuesday October 15. You are encouraged to collaborate on
the homework and ask for assistance, but you are required to write your own solutions, list your
collaborators, acknowledge any sources of help, and provide external references if you have used
any.

Question 1

In this question you will improve the lower bound on the decision tree size for recursive majority
by a different method. Given a function f : {−1, 1}n → {−1, 1}, let L(f) =

∑
|f̂S | be the sum

of the absolute values of the coefficients of its polynomial (Fourier) representation. For example,
MAJ3(x1, x2, x3) = 1

2x1 + 1
2x2 + 1

2x3 − 1
2x1x2x3 and so L(MAJ3) = 4 · 1

2 = 2. In this question we
represent both inputs and outputs by −1/1 values.

(a) Let f be the AND of n literals (variables or their negations) in −1/1 representation. What
is L(f)?

Solution: Let’s use f01 for 0/1 output representation and f for −1/1 output representation.
They are related by the formula f = 1− 2f01. Then

AND01(x1, . . . , xn) =
1 + x1

2
· · · 1 + xn

2
=
∑
S⊆[n]

1

2n

∏
i∈S

xi

so L(AND01) = 1. Moving to −1/1 outputs, all the coefficients double except the constant
term which becomes 1− 2 · 2−n. Therefore L(AND) = 2(1− 2−n) + (1− 2 · 2−n) = 3− 4 · 2−n
(for n > 0).

(b) Use part (a) to show that if f has a decision tree of size at most s then L(f) ≤ 3s.

Solution: In 0/1 output representation, a decision tree f01 can be written as a sum ANDs
of literals, one for each path leading to a 1-leaf. Each AND of literals has L-value 1 so by the
triangle inequality f01 can have L-value at most s. Moving to −1/1 representation we get
that L(f) = L(1− 2f01) ≤ 2L(f01) + 1 ≤ 2s+ 1 ≤ 3s.

(c) Let h(y1, y2, y3) = f(g(y1), g(y2), g(y3)), where y1, y2, y3 are sets of disjoint variables and g has
no constant term (i.e. ĝ∅ = 0). Show that L(h) = F (L(g), L(g), L(g)), where F is the poly-
nomial obtained from f by turning all its coefficients positive (i.e., F (x) =

∑
S |f̂S |

∏
i∈S xi).

Solution: Assume first that f is a monomial mI =
∏
i∈I xi. Then the coefficients of h are of

the form ĥS =
∏
i∈I ĝS∩Yi , where Yi are the indices of variables yi. Then

L(h) =
∑
S

|ĥS | =
∏
i∈I

∑
Si

|ĝSi | = mI(L(g), L(g), L(g)).

If mI and mJ are distinct monomials, then mI(g(y1), g(y2), g(y3)) and mJ(g(y1), g(y2), g(y3))
do not share any common monomials because there is some set of variables yi one of which
is present in each monomial of one but not of the other. So if f is a linear combination of mono-
mials, each of them will contribute distinct terms in h and L(h) =

∑
|f̂(I)|mI(L(g), L(g), L(g)) =

F (L(g), L(g), L(g)).

(d) Use part (c) to show that L(RMAJd) ≥ L(RMAJd−1)3/2.

Solution: Let `d = L(RMAJd). By part (c) `d satisfies the recurrence `d = F (`d−1, `d−1, `d−1)
where F (x1, x2, x3) = 1

2x1 + 1
2x2 + 1

2x3 + 1
2x1x2x3. Therefore `d = 3

2`d−1 + 1
2`

3
d−1 ≥

1
2`

3
d−1.



(e) Use parts (b) and (d) to show that RMAJd requires decision tree size 2Ω(3d).

Solution: We can rewrite the inequality in part (c) as `d/
√

2 ≥ (`d−1/
√

2)3. Plugging in the

base case `1 = 2 we get that `d ≥ (
√

2)3d−1+1. By part (b) any decision tree for RMAJd must

have size at least (
√

2)3d−1+1/3 = 2Ω(3d).

Question 2

In Lecture 4 we showed that R0(RMAJd) ≤ (8/3)d for the recursive majority of threes function
RMAJd : {0, 1}n → {0, 1}, n = 3d. In this question you will prove a lower bound for R1/3(RMAJd).
We say a bit is ε-biased (where −1 ≤ ε ≤ 1) if it takes value 0 with probability (1− ε)/2 and value
1 with probability (1 + ε)/2.

(a) Let X,Y, Z be independent ε-biased bits. Let ε′ be the bias of MAJ3(X,Y, Z). What is ε′ as
a function of ε?

Solution: This can be calculated by hand but here is a more immediate way to derive it
from the polynomial representation of MAJ3. For {−1, 1}-valued bits the bias is equal to
the expectation. If we view MAJ3 as a function from {−1, 1}n to {−1, 1} and its inputs are
independent ε-biased bits then

E[MAJ3(X,Y, Z)] = E
[

1
2X + 1

2Y + 1
2Z −

1
2XY Z

]
= 1

2 E[X] + 1
2 E[Y ] + 1

2 E[Z]− 1
2 E[X] E[Y ] E[Z]

= 3
2ε−

1
2ε

3.

(b) Show that there exists some small constant ε0 > 0 such that if |ε| ≤ ε0 then ε′+ε′2 ≥ 3
2(ε+ε2).

Solution: By part (a),

ε′ + ε′2 = (3
2ε−

1
2ε

3) + (3
2ε−

1
2ε

3)2 = 3
2(ε+ ε2) + ε2(3

4 −
1
2ε−

3
2ε

2 + 1
4ε

4).

The term in the second parenthesis is dominated by 3
4 and so it is positive when |ε| is at most

say 1/2, so the whole expression is at least 3
2(ε+ ε2).

(c) Now let X1, . . . , Xn, where n = 3d be (2/3)d-biased bits. Use part (b) to show that the bias
of the bit RMAJ(X1, . . . , Xn) is lower bounded by some constant independent of d.

Solution: Let’s rename the constant ε0 from part (b) to 1/2 because we’ll use ε0 for something
else. Let εd be the bias of RMAJd when the inputs are independent ε0-biased bits. Since
3
2ε −

1
2ε

3 ≥ ε for all ε > 0, the sequence ε0, . . . , εd is non-decreasing. Moreover, by part (b)
εt + ε2

t ≥ (3/2)t(ε0 + ε2
0) as long as εt−1 ≤ 1/2. Setting ε0 = (2/3)d we get that εd + ε2

d must
be at least as large as 1/2. Then εd is at least 1/3.

For the last part you will need the following theorem from statistics: If X1, . . . , X` and Y1, . . . , Y`
are independent ε-biased and (−ε)-biased bits respectively, then (X1, . . . , X`) and (Y1, . . . , Y`) are
O(
√
ε2`)-indistinguishable by all algorithms.

(d) Show that R1/3(RMAJd) ≥ Ω((9/4)d).

Solution: First we argue that for any deterministic decision tree T of depth ` that queries
i.i.d. coin flips, the acceptance probability doesn’t change if the i-th query is always answered
by the i-th coin flip, so that T ’s input is effectively ` bits long. From the perspective of the
decision tree, each query is answered by a coin flip independent of all the bits queried so far, so
the acceptance probability should not be affected as long as a fresh coin flip is used to answer
every query. Therefore E[T (X)]−E[T (Y )] = O(

√
ε2`). If you don’t find this convincing, read

the next paragraph.



Proof. Write T as a sum of juntas Jp(Xp(1), . . . , Xp(`)), one for each path p leading to a 1-leaf
that queries inputs p(1), . . . , p(`) in that order. Since the inputs are i.i.d. (and therefore
exchangeable), E[Jp(Xp(1), . . . , Xp(`))] = E[Jp(X1, X2, . . . , X`)]. By linearity of expectation,
E[T (X)] is therefore equal to E[T ′(X1, . . . , X`)], where T ′ is the decision tree whose i-th
query is always the i-th variable. In particular, E[T (X)] − E[T (Y )] = E[T ′(X1, . . . , X`)] −
E[T ′(Y1, . . . , Y`)] = O(

√
ε2`) by the theorem from statistics.

Set ε = (2/3)d. Then E[T (X)] − E[T (Y )] is at most O(
√

(2/3)2d`), which is less than 1/9
when ` = c(3/2)2d for a sufficiently small constant c > 0. Suppose for contradiction that there
is a randomized decision tree, that is a distribution T over deterministic decision trees, with
error 1/9 for RMAJd. Then |E[RMAJd(X)]− E[T (X)]| and |E[RMAJd(Y )]− E[T (Y )]| are
both at most 1/9. By the triangle inequality |E[RMAJd(X)] − E[RMAJd(Y )]| is less than
1/3. But by part (c) this difference is at least (1+1/3)/2−(1−1/3)/2 = 1/3, a contradiction.

(e) (Extra credit:) In conclusion, (9/4)d � R1/3(RMAJd) � R0(RMAJd) ≤ (8/3)d. Can you
improve any of these bounds?

Solution: Here is a reference. There is still plenty of room for improvement!

Question 3

In Lecture 5 we claimed there exist ε
√
n-wise indistinguishable distributions µ and ν on {−1, 1}n

such that µ assigns probability at least 0.99 to the all-ones string and ν assigns probability at least
0.62 to all strings with exactly one −1 for some ε > 0. Let φ : {−1, 1}n → R be the function

φ(x) =
(∏n

i=1
xi

)
· ES

[∏
i∈S

xi

]2
,

where S is a random subset of {1, . . . , n} of size at most (n − d)/2 (chosen uniformly among all
such subsets), and ES is expected value.

(a) Show that if p : {−1, 1}n → R is a polynomial of degree less than d then
∑

x∈{−1,1}n p(x)φ(x) =
0. (Hint: Look at the monomials of p and φ.)

Solution: All monomials in φ are of degree at least d: The monomial inside the expectation
are of degree at most (n − d)/2. After squaring their degree does not exceed n − d, so
after multiplying by the leading term the degree will be at least d. Therefore p and φ do
not have any monomials in common. Multiplying any two of these monomials is therefore
a non-constant monomial, which averages out to zero when x ranges over all n-bit {−1, 1}
strings.

(b) Let µ(x) = max{2φ(x)/Z, 0} and ν(x) = max{−2φ(x)/Z, 0}. Use part (a) to show that for
some choice of Z, µ and ν are probability distributions that are (d−1)-wise indistinguishable.

Solution: Setting p(x) = 1 in part (a) we get that
∑
φ(x) = 0, which means that the positive

and negative values of φ must add up to the same value. So if they are both normalized
by the same constant Z/2 they both become probability distributions µ and ν. Writing
φ(x) = (Z/2)(µ(x)− ν(x)), it follows from part (a) that

∑
p(x)µ(x) =

∑
p(x)ν(x) for every

p of degree d − 1 or less. In particular this is true when p is a (d − 1)-junta. Therefore
all (d − 1)-juntas average out to the same value under µ and ν and so the two are (d − 1)-
indistinguishable.

(c) Show that Z =
∑

x∈{−1,1}n ES
[∏

i∈S xi
]2

. Calculate 2/Z in terms of n and d. Solution: The

https://link.springer.com/chapter/10.1007/978-3-642-39206-1_59


identity follows from∑
x∈{−1,1}n

ES
[∏

i∈S
xi
]2

=
∑

x∈{−1,1}n
|φ(x)| = Z

2
·
( ∑
x∈{−1,1}n

µ(x) +
∑

x∈{−1,1}n
ν(x)

)
= Z

because µ and ν are probability distributions. To calculate Z we can expand the squared
expectation as a product of expectations over independent choices of sets S, T so that

Z =
∑

x∈{−1,1}n
ES

[∏
i∈S

xi

]
ET

[∏
i∈S

xi

]
=

∑
x∈{−1,1}n

ES,T

[∏
i∈S⊕T

xi

]
= ES,T

∑
x∈{−1,1}n

∏
i∈S⊕T

xi,

where ⊕ is symmetric set difference. The terms S 6= T vanish because the product averages
out to zero and take value 2n when S = T . Therefore Z = 2n Pr[S = T ] and

Z

2
= 2n−1 Pr[S = T ] = 2n−1

/((
n
0

)
+ · · ·+

(
n

(n−d)/2

))
.

(d) Let d = ε
√
n. Calculate limε→0 limn→∞ µ(1n), where 1n is the all-ones string.

Solution: The reciprocal 2/Z is the probability that a random 0/1 string has at most (n−d)/2
ones conditioned on it having at most n/2 ones. Since a Binomial(n, 1/2) random variable has
mean n/2 and standard deviation

√
n/2, by the Central Limit Theorem when d = ε

√
n, 2/Z

approaches the probability that a Normal(0, 1) random variable is greater than ε conditioned
on it being positive. When ε tends to zero this probability tends to 1.

(e) Let W = (n − 2|S|)/
√
n. Show that

∑
x∈N ν(x) = 2 E[W ]2/Z, where N is the set of strings

with exactly one −1.

Solution: Let x be a string with exactly one 1. Conditioned on the size of S being s (and
S being otherwise random),

∏
i∈S xi takes value −1 with probability s/n and 1 with the

remaining probability, so ES
[∏

i∈S xi
]2

= E[1 − 2|S|/n]2 = E[W ]2/n. Since
∑

x∈N ν(x) is
2/Z times the sum of n such terms it equals 2 E[W ]2/Z.

(f) Use part (e) and the Central Limit Theorem to calculate limε→0 limn→∞
∑

x∈N ν(x).

Solution: |S| is a Binomial(n, 1/2) random variable B conditioned on it having value at
most (n− d)/2. Its normalized CDF is:

Pr[W ≤ w] = Pr[|S| ≤ (n− w
√
n)/2]

= Pr[B ≤ (n− w
√
n)/2 | B ≤ (n− ε

√
n)/2]

=
Pr[B ≤ (n− w

√
n)/2]

Pr[B ≤ (n− ε
√
n)/2]

.

By the Central Limit Theorem, the numerator and denominator converge to Pr[N ≤ w] and
Pr[N ≤ ε] respectively, for a Normal(0, 1) random variable N . Therefore

lim
n→∞

Pr[W ≤ w] = Pr[N ≤ w | N ≤ ε].

We would therefore expect that

lim
n→∞

E[W ] = E[N | N ≤ ε], (1)



from where by continuity of the function ε→ E[N | N ≤ ε] we can calculate

lim
ε→0

lim
n→∞

E[W ] = E[N | N ≤ 0] =
2√
2π

∫ 0

−∞
xe−x

2/2dx = −
√

2

π
,

which, together with parts (d) and (e), gives limε→0 limn→∞
∑

x∈N ν(x) = 2/π.

To be completely formal we need to prove (1). It is a bit easier to work with −W instead of
W as −W is non-negative. Let us also write Nε for N conditioned on N ≥ ε. By the Central
Limit Theorem Pr[−W ≥ w] and Pr[Nε ≥ w] are δn-close for some δn that goes to zero as n
increases.1 Using the formula E[X] =

∫∞
0 Pr[X ≥ w]dw which holds for all non-negative X

we can bound the difference in expectations by

|E[−W ]− E[Nε]| =
∣∣∣∣∫ ∞

0
(Pr[−W ≥ w]− Pr[Nε ≥ w])dw

∣∣∣∣
≤
∫ B

0
|Pr[−W ≥ w]− Pr[Nε ≥ w]|dw

+

∫ ∞
B

Pr[−W ≥ w]dw +

∫ ∞
B

Pr[Nε ≥ w]dw.

Set B = 1/
√
δn. By the Central Limit Theorem the integrand in the first term is at most δn

so the value of the integral is at most
√
δn. The other two terms can be handled using large

deviation bounds. First, Pr[Nε ≥ w] = O(Pr[N ≥ w]) = O(e−w
2/2). For Pr[−W ≥ w] we can

apply for instance the Chernoff bound to conclude that it is also O(e−w
2/2). Therefore, up

to a constant, both integrals are at most O(e−B
2/2) = O(e−1/δn). In the limit as δn goes to

zero, the right-hand terms go to zero and so the expectations approach one another.

(g) Use parts (b), (d), and (f) to prove the claim.

Solution: Let n be sufficiently large. By part (b) µ for d − 1 = ε
√
n, µ and ν are ε

√
n-

wise indistinguishable. By parts (d) and (f) in the limit ε → 0, µ(1n) approaches 1 and
ν(N) approaches 2/π ≥ 0.63. By continuity for some ε > 0 we get that µ(1n) ≥ 0.99 and
ν(N) ≥ 0.62 as desired.

(h) (Research project:) Can you come up with ε
√
n-wise indistinguishable µ and ν for which

both the limits in part (d) and part (f) are 1? I know that they exist but I don’t know a
“nice” formula for them.

1This assumes the convergence in the Central Limit Theorem is uniform in w, which is true.

https://en.wikipedia.org/wiki/Chernoff_bound

