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All circuits in this assignment are of unbounded fan-in.

Question 1

This question is about the decision tree complexity of the recursive majority function. Recursive
majority of n = 3d bits is defined by the formula

RMAJd(x, y, z) = MAJORITY3

(
RMAJd−1(x), RMAJd−1(y), RMAJd−1(z)

)
,

where x, y, z ∈ {0, 1}n/3 and n is a power of 3. The base case is RMAJ0(x) = x.

(a) Show (by induction on d) that RMAJd has decision tree depth 3d.

Solution: This is true for d = 0 because RMAJ0 is not constant. Suppose it is true for
d− 1. For any ordering of the 3n inputs, by inductive assumption there exists an assignment
of values so that RMAJd−1(x) is undetermined until all of the bits of x are queried, and the
same is true for y and z. By symmetry we may assume that the last bits in x and y are
queried before the last bit of z. If the last queried bits in x and y are assigned opposite values
then the value of RMAJd is undetermined until the last bit of the input is queried by the
decision tree.

(b) Show that RMAJd is not 2d-undetermined.

Solution: This is true by induction on d: RMAJ0 can be set to zero by restricting its input
to zero. Assuming RMAJd−1 can be set to zero by resticting 2d−1 of its input, so can RMAJd
by restricting its x and y inputs accordingly.

(c) Show that Pr[MAJORITY3|ρ is a constant] = 3
2p

2 − 1
2p

3, where ρ ∈ {0, 1, ?}3 is a (1 − p)-
random restriction (meaning each entry is a star with probability 1− p).

Solution: MAJORITY3 restricts to a constant if the restriction has at least two zeros or at
least two ones. The probability ρ has exactly two zeros is 3(p/2)2(1−p/2) and the probability
it has three zeros is (p/2)3. The probabilities are the same for at least two ones, so the desired
probability is 2(3(p/2)2(1− p/2) + (p/2)3) = 3p2/2− p3/2.

(d) Show that Pr[RMAJd|ρ is a constant] ≤ 2−2d , where ρ ∈ {0, 1, ?}3d is a 2/3-random restric-
tion. (Hint: Use part (c) and induction.)

Solution: If pd is the desired probability then by part (c) pd = 3
2p

2
d−1 −

1
2p

3
d−1, so 3

2pd ≤
(3

2pd−1)2. Unwinding this recursion, we get that pd ≤ 2
3(3

2p0)2d ≤ 2−2d for p0 = 1/3.

(e) Let ρ be as in part (d). Show that with probability at least 1/2, ρ can be extended by another
restriction α so that RMAJd|ρα is the function RMAJd−t, where t = dlog de+ 1.

Solution: RMAJd can be written as RMAJd−t of 3d−t RMAJt functions on distinct inputs.
By part (d) and a union bound, the probability that any one of these RMAJt functions

restricts to a constant under ρ is at most 3d−t·2−2t = 2(d−t) log 3−2log d+1 ≤ 2−0.415d−1.584t ≤ 1/2.
Assuming none restrict to a constant, all but one of their inputs can be fixed by some α so
that this property is preserved. Then RMAJd|ρα is the recursive majority of depth d− t.



(f) Finally, show that RMAJd requires decision tree size 2Ω(3d/dlog2 3). (Hint: Use part (a), part
(e), and Theorem 5 from Lecture 1.)

Solution: Combining the three parts we get the inequality s · (5/6)3d−t ≥ 1/2, from where

s ≥ 1
2 · (6/5)3d/3t ≥ 1

2 · (6/5)3d/9dlog2 3
.

Question 2

Recall the function DISTINCT : {0, 1}2n → {0, 1} from Lecture 1:

DISTINCT (x, y) = (x1 6= y1) or · · · or (xn 6= yn).

(a) Show that DISTINCT has a decision tree of size O(2n).

Solution: The following decision tree solves DISTINCT . Read x1 and then y1. If they are
different output zero, if they are equal recursively solve DISTINCT on 2n− 2 inputs. The
size of this decision tree satisfies the recurrence s(n) = 2s(n − 1) + 2 with initial condition
s(1) = 4 which solves to s(n) = 3 · 2n − 2.

(b) Show that the function EQUAL = not DISTINCT requires DNFs of size 2n, and therefore
also decision trees of size 2n.

Solution: We show that any term in any DNF for EQUAL must include all 2n variables.
Suppose there is a term that misses at least one variable and let (x, y) be an assignment that
satisfies this term. By possibly flipping the value of the missing variable we can always obtain
an assignment that the term still accepts but in which x and y are not equal. So such a DNF
cannot compute EQUAL.

Each term that includes all 2n variables accepts a random assignment with probability 2−2n.
Since the probability that x equals to y is 2−n there must be at least 2n clauses in the DNF.

(c) Show that every size s DNF has a decision tree of size O(ns).

Solution: We describe the decision tree recursively. Given any clause of the DNF, the
decision tree queries the variables in that term one by one. If the answer to the i-th query
makes the term reject, the decision tree recursively computes the remaining DNF of size s−1.
If the answers to all queries satisfy the term, the decision tree outputs 1. For the base case,
when s = 0 the decision tree outputs 0.

The size of the decision tree satisfies the recurrence t(s) = nt(s−1)+1 with base case s(0) = 1
which solves to t(s) = O(ns).

(d) Show that the DNF

x11x12 · · ·x1w or x21x22 · · ·x2w or · · · or xs1xs2 · · ·xsw

where ws = n requires decision tree size (n/s)s.

Solution: Consider the set X of inputs that have exactly one zero in each term. An element
of X can be described by specifying the positions of the zeros so X has size ws. We argue
that in any decision tree for this DNF, no two inputs in X follow the same path in the tree.
Assume some two inputs do. These inputs differ by the values of two variables in the same
term, so these two variables cannot be queried on the path. But the value of the function
on both inputs is then undetermined so the inputs must lead to different leaves. So the tree
must have at least ws leaves.



Question 3

In Lecture 2 we claimed that any function f : {0, 1}n → {0, 1} has a unique representation as
f(x) = p(x) ·MAJORITY (x) + q(x), where p and q have degree at most (n− 1)/2 and n is odd.
You will prove this claim.

(a) Let p be a nonzero polynomial and a ∈ {0, 1}n be any string. Show that Dap has lower degree
than p, where Dap(x) = p(x+ a) + p(x) and x+ a is the bitwise XOR of x and a.

Solution: By linearity it is enough to prove this for monomials. When p is a monomial
p(x+ a) is not, but its highest degree monomial is p. The highest degree monomials in p(x)
and p(x+ a) cancel out so Dap has strictly lower degree.

(b) Let Da0,...,adp = Da0Da1 . . . Dadp. Prove the identity

Da0,...,adp(x) =
∑

S⊆{0,...,d}
p

(
x+

∑
i∈S

ai

)
.

Solution: This can be proved by induction. The base case d = 0 is immediate. For the
inductive step from d− 1 to d:

Da0Da1,...,adp(x) = Da0

∑
S⊆{1,...,d}

p

(
x+

∑
i∈S

ai

)

=
∑

S⊆{1,...,d}

p

(
x+ a0 +

∑
i∈S

ai

)
+

∑
S⊆{1,...,d}

p

(
x+

∑
i∈S

ai

)
so the identity holds for all d.

(c) Use parts (a) and (b) to show that for every string x with more than d ones there exist strings
x1, . . . , xK with fewer ones than x such that p(x) =

∑
p(xi) for all p of degree at most d.

Solution: Let ai be the string obtained that is zero everywhere except in the position of the
i-th one entry of x. Then all strings of the form xS = x+

∑
i∈S ai have fewer ones than x. By

part (b) they all add up to zero, so p(x) = p(x∅) can be represented as a sum of the others.

(d) Use part (c) to show that if p has degree at most (n− 1)/2 and p vanishes on all inputs with
at most (n− 1)/2 ones then p must vanish everywhere.

Solution: By induction on the number of ones, any string x with at least d ones satisfies the
property in part (c). The right-hand side

∑
p(xi) is a sum of zeros so p(x) is also zero.

(e) Use part (d) to show that if p, q have degree at most (n − 1)/2 and p(x)MAJORITY (x) +
q(x)(1 +MAJORITY (x)) = 0 for all x, then p and q must be the zero polynomials.

Solution: This polynomial has value q(x) at every x such that MAJORITY (x) = 0,
namely on all inputs with at most (n− 1)/2 ones. By part (c) q must vanish everywhere so
p(x)MAJORITY (x) is the zero polynomial. So is the polynomial p(1 +x)MAJORITY (1 +
x), where 1 is the all-ones input. The polynomial p(1 + x) has degree at most (n− 1)/2 and
vanishes on all inputs with at most (n − 1)/2 ones so by part (c) p(1 + x) too must vanish
everywhere, and so must p.

(f) Use part (e) to show that every f can have at most one representation of the desired type.

Solution: If f has two such representations (p, q) and (p′, q′), then their difference (p −
p′, q − q′) would be a representation of zero, so p − p′ and q − q′ must be zero, so the two
representations are identical.



(g) Prove the claim. (Hint: Count.)

Solution: To describe p we need to list all its coefficients. There is one coefficient for every
set of size less than n/2, of which there are 2n/2 (since each set and its complement match all
subsets of {1, . . . , n}). So there are 22n/2 choices for p and as many for q, or (22n/2)2 = 22n

choices for the pair (p, q). This is equal to the number of functions from n bits to one bit. If
a function has no reperesntation then some other function must have more than one, which
is impossible by part (f).


