
CSCI 5170: Computational Complexity Midterm Solutions
The Chinese University of Hong Kong, Fall 2019

Question 1

Let x1, . . . , x10 ∈ {0, 1}100 be 10 strings of 100 bits each. The distinctness functionDIST (x1, . . . , x10)
takes value 1 if all strings are distinct (xi 6= xj when i 6= j) and 0 otherwise.

(a) Show that any deterministic read-once branching program for DIST (that reads its input
from left to right) must have width at least 2490.

Solution: We claim that all sets S consisting of the first five inputs {x1, x2, x3, x4, x5} must
lead to a different state in the middle layer. For contradiction, if two distinct sets S =
{x1, . . . , x5} and S′ = {x′1, . . . , x′5} lead to the same state then there must be some element
x that is in say S but not S′. Consider a sequence x6, . . . , x10 that contains x but none of
the elements in S′. Then x1, . . . , x10 aren’t distinct but x′1, . . . , x

′
5, x6, . . . , x10 are, but the

branching program produces the same answer to both inputs so it cannot compute DIST .
Therefore the width must be at least the number of subsets of {0, 1}10 of size 5 or less which is

at most 2492. In fact 5 can be replaced with 9 leading to the stronger bound
∑9

i=1

(
2100

i

)
> 2881.

(b) Let h : {0, 1}100 → {0, 1}10 be a random function. Show that with probability at least 95%,
DIST (h(x1), . . . , h(x10)) = DIST (x1, . . . , x10) for any fixed choice of inputs.

Solution: If x1, . . . , x10 are not distinct then h(x1), . . . , h(x10) are never distinct. If x1, . . . , x10
are distinct then h(xi) = h(xj) with probability 1/210 (as both values are random and inde-
pendent) so by a union bound

Pr[DIST (h(x1), . . . , h(x10)) = 0] = Pr[∃i < j : h(xi) = h(xj)]

≤
∑
i<j

Pr[h(xi) = h(xj)] =

(
10

2

)
· 2−10 < 5%.

(c) Show that DIST can be computed by a randomized read-once branching program of width
at most 2200 with error at most 5%.

Solution: The branching program in question chooses a random h. After reading xi it stores
the value h(xi). In the end it compares the stored values h(x1), . . . , h(x10) and accepts iff
they are all distinct. By part (b) the answer is correct on every input except with probablity
at most 5%. The program needs 10 bits to store each of the values h(x1), . . . , h(x10) plus 100
bits to store xi as it is being read so it can be implemented with 200 (in fact 190) bits of
memory, or width 2200.

In fact the analysis in part (b) works even if, instead of being truly random, h is the function
h(x) = (IP (x; r1), . . . , IP (x, r10)) where r1, . . . , r10 ∈ {0, 1}100 are random strings and IP
is the inner product function from Lecture 3. This function is not random, but the only
property of h used in part (b) was that Pr[h(xi) = h(xj)] = 2−10 when xi and xj are distinct
and this still holds because Pr[IP (xi, r) = IP (xj , r)] = Pr[IP (xi + xj , r) = 0] = 1/2. This
implementation only needs to store 10 bits of the input it is currently reading so the resulting
branching program has width only 100.

Question 2

Let X be an n by n matrix and f : {0, 1}n2 → {0, 1} be the function

f(X) =

{
1, if f has exactly one column consisting of zeros only,

0, otherwise.

Determine the following quantities up to a constant factor (i.e., in Θ(·) notation). Provide both
upper and lower bound proofs.

(a) the deterministic query complexity D(f)

Solution: This is n2 by an “adversary argument”. Answer the queries of the decision tree
by zeros, until a whole column is queried, in which case the last column query is answered
by 1. If the decision tree has depth strictly less than n2 the queried part of the input X is
consistent both with the possibilities f(X) = 0 and f(X) = 1, so the decision tree cannot
compute f on all inputs.

(b) the exact degree deg(f) when f is viewed as a real-valued polynomial

Solution: This is also n2, giving also an alternative proof of part (a). We will represent the
polynomial as a function from {0, 1}n → {0, 1} for convenience as this does not affect the
degree. Then f(X) = g(h(X1), . . . , h(Xn)), where X1, . . . , Xn are the columns of X, h is
the “zeros only” function, and g is the “exactly one one” function. The unique polynomial
representations of h and g are

h(x1, . . . , xn) = (1− x1) · · · (1− xn) g(y1, . . . , yn) =
n∑

i=1

yi
∏
j 6=i

(1− yj).

Both h and g contain the degree-n monomials x1 . . . xn and (−1)n−1ny1 · · · yn, respectively,
so their composition f must contain the degree-n2 monomial

∏n
i,j=1Xij .

(c) the sensitivity sens(f)

Solution: This is 2n. If X has exactly two all-zero columns, then changing any of the 2n
entries in these columns flips the value of f showing that the sensitivity is at least 2n. We
argue it is at most 2n by cases. Matrices with 3 or more all-zero columns are insensitive. If
there are exactly two, only the 2n entries in those two can change the value of f from 0 to 1.
If there is exactly one all-zero column, then the entry can be changed from 1 to zero either
by destroying this column or creating a new all-zero column. There are n choices for the first
possibility and at most n − 1 for the second as the only way to create an all-zero column is
to flip a 1-entry in it provided it is unique, for a total of at most 2n− 1. Finally, if there are
no all-zero columns, there can be at most n variables that can be flipped to create one.

(d) (Extra credit) the Monte Carlo randomized query complexity R1/3(f)

Solution: It should be Ω(n2). Let X1 be a random matrix whose columns are random
independent vectors with exactly one 1, and X0 be a random matrix like X1 except a random
1-entry is converted to a 0. I think it can be shown that the advantage of a decision tree that
makes say n/100 queries is at most 1/3 but the analysis I have in mind is a bit complicated.

(e) (Mini-research project) the quantum query complexity Q1/3(f)

Question 3

A solution generator for a search relation R ⊆ {0, 1}∗ × {0, 1}∗ is an algorithm G that on input
(x, `) outputs the `-th lexicographically smallest y such that (x, y) ∈ R, and the special symbol ⊥
if such a y does not exist. For example, if (0, 0), (0, 10), (0, 111) ∈ R but (0, y) 6∈ R for all other
y then G(0, 1) = 0, G(0, 2) = 10, G(0, 3) = 111, and G(0, `) = ⊥ for all other `. We say that a
solution generator is efficient if its running time is polynomial in |x| and `.

(a) Prove that the search relation RDNF = {(φ, y) : φ is a DNF such that φ(y) = 1} (a DNF is
an OR of ANDs of literals) has an efficient solution generator.

Solution: For each term t of the DNF let St be the set of the ` lexicographically smallest
assignment that satisfy t. Once the variables in t are fixed to their satisfying value the rest
of the assignment can be arbitrary so St can be listed in time O(n`). The `-th smallest
assignment to φ must then belong to one of the sets S1, . . . , Sm, where m is the number of
terms. The efficient solution generator lists the sets St (in time O(n`)), sorts them (in time
at most O(mn` logm`))) and then outputs the `-th assignment.

An alternative solution is the following recursive algorithm LIST (φ, `) that lists the first `
solutions (or fewer if there aren’t `): If φ is unsatisfiable or ` = 0 output the empty list.
Otherwise, run LIST (φ0, `) followed by LIST (φ1, `− `0), where φb is φ restricted to x1 = b
and `0 is the number of solutions produced by LIST (φ0, `). The running time of LIST
satisfies the recurrence T (n, `) ≤ T (n−1, `0)+T (n−1, `− `0)+ t where t is the time to check
if φ is satisfiable (which is polynomial in |φ|). By induction on n it follows that T (n, `) ≤ n`t.

(b) Prove that if the search relation RCNF = {(φ, y) : φ is a CNF such that φ(y) = 1} (a CNF is
an AND of ORs of literals) has an efficient solution generator then P = NP.

Solution: Under this assumption SAT is in P because on input (φ, 1) if the solution generator
for RCNF output a satisfying assignment then φ is satisfiable and if it outputs ⊥ it isn’t. Since
SAT is NP-complete, P must equal NP.

(c) Prove that if P = NP then every NP search relation has an efficient solution generator.

Solution: In Lecture 7 we described an algorithm that outputs a solution for CSAT given that
one exists. In fact the algorithm we described outputs the lexicographically smallest solution.
Moreover, the reduction from problems in NP to CSAT preserves the solution space, so the
lexicographically smallest solution to any NP problem can be found in polynomial time.

Given an NP-search relation R, consider the relation

R` = {((x, 1`), (y1 · · · y`)) : R(x, y1) and · · · and R(x, y`) and y1 < · · · < y`}

where < is the lexicographic ordering. This is also an NP-relation since the condition can be
verified by running ` copies of the verifier for R and checking the ordering, which takes time
O(`+ |x|). We added the portion 1` to the input so the running time stays polynomial in the
length of the input (x, 1`) to R`. We can therefore find the lexicographically smallest solution
to R`, which equals the ` lexicographically smallest solutions of R, in time polynomial in
|x|+ `.

An alternative solution is to run the same algorithm as in part (a) applied to the CSAT
instance C. Checking that C is satisfiable can be done using the assumed polynomial-time
algorithm for CSAT so the algorithm is efficient assuming P = NP.

