ENGG 2430 / ESTR 2004: Probability and Statistics Spring 2019

9. Limit Theorems

Andrej Bogdanov

Many times we do not need to calculate probabilities exactly

An approximate or qualitative estimate often suffices

P(magnitude 7 + earthquake within 10 years) = ?

I toss a coin 1000 times. The probability that I get a streak of 14 consecutive heads is

 $\mathbf{C} \times$ $\approx 50\%$ > 90% $P(14H) \ge 1 - (1 - 2^{-14})^{1000/14} \approx 0$ N = NUMBER OF 14H STREAKS $H = N_1 + \dots + N_{987}$ $M = \{1, \underline{H}, \dots + M_{14}, \text{STAPTING AT } i \}$ $M_i = \{0, \overline{F}, NOT\}$ $E[N] = E[N_1] + \dots + E[N_{g_7}] = 987 \cdot 2^{-14} \approx 0.06$ $P(N \ge 1) \in E[N]/1 \approx 0.06.$

For every non-negative random variable X and every value a:

$$\mathbf{P}(X \ge a) \le \mathbf{E}[X] / a.$$

Proof $E[X] = \frac{E[X|X \ge a]P(X \ge a) + E[X|X < a]P(X < a)}{\ge a} \xrightarrow{\ge a} \xrightarrow{> a} \xrightarrow{$

1000 people throw their hats in the air. What is the probability at least 100 people get their hat back?

N = NUMBER OF HATS RETURNED E[N] = 1 $P(N \ge 100) \le \frac{E[N]}{100} = \frac{1}{100} = \frac{1}{100}$ X = Uniform(0, 4). How does $P(X \ge x)$ compare with Markov's inequality?

E[X] = 2

×	Ţ	2	3	4	
P(XZX)	3/4	1/2	14	0	
E[X]/x	2	1	2/3	1/2	
	USELESS		FA RE	FAR FROM REALITY	

IN GENERAL MARKOV IS NOT VERY USEFUL WHEN PDF IS "SPREAD OUT" AROUND MEAN. I toss a coin 1000 times. What is the probability I get 3 consecutive heads (a) at least 700 times (b) at most 50 times N= #TIMES (GET HHH $E[N] = E[N_1 + \dots + N_{998}] = 998 \cdot \frac{1}{8} = 124.75$ $P(N \ge 700) = P(N \ge IGI \cdot E[N7) \le \frac{1}{5G} \approx 18\%$ P(NE50) NO INFORMATION

For every random variable *X* and every *t*: $P(|X - \mu| \ge t\sigma) \le 1 / t^2.$ where $\mu = E[X]$, $\sigma = \sqrt{Var[X]}$.

For every random variable *X* and every *t*: $P(|X - \mu| \ge t\sigma) \le 1 / t^2.$ where $\mu = E[X]$, $\sigma = \sqrt{Var[X]}$.

Proof.
$$Y = (X - E[X])^2$$

 $Var[X] = E[Y]$ $Y \ge 0$
 $Pr[Y \ge t^2 E[Y]] \le \frac{1}{t^2}$ Markon
 $Pr[(X - E[X])^2 \ge t^2 Var[X]] \le \frac{1}{t^2}$

Markov's inequality:

$$P(X \ge a) \le \mu / a.$$

I toss a coin 64 times. What is the probability I get at most 24 heads?

$$X = Binomial(64, \frac{1}{2}) \qquad E[X] = 32$$

$$P(X \le 24) \qquad Var[X] = 64 \cdot \frac{1}{2} \cdot \frac{1}{2} = 16$$

$$\sigma = 4$$

$$P(X \le \mu - 2 \cdot \sigma)$$

$$P(|X - \mu| \le 2\sigma) \le \frac{1}{2^2} = \frac{1}{4}$$

$$P(X \le 24) \le \frac{1}{4}.$$

$$\le \frac{1}{8} \quad BY \quad STMMETref coes$$

$$\mu - 2\sigma \qquad \mu = 32 \quad \mu + 2\sigma$$

N=TWE POPULATION $X = X_1 + \ldots + X_n$ NUMBER OF PEOPLE Pale NUMBER OF PEOPLE Pale NUMBER OF PEOPLE Pale

Polling

How accurate is the pollster's estimate X/n?

$$\mu = \mathbf{E}[X_i], \ \sigma = \sqrt{\mathbf{Var}[X_i]} = (\mu(I-\mu))$$

$$E[X] = E[X_1] + \dots + E[X_n] = nM$$

$$Var[X] = Var[X_1] + \dots + Var[X_n] = n\sigma^2$$

$$\sigma_X = n\sqrt{\sigma}$$

$$P(|X/n - \mu| \ge \varepsilon) = P(|X - \mu n| \ge \varepsilon n)$$

$$= P(|X - \varepsilon | x] \ge \varepsilon n)$$

$$= P(|X - \varepsilon | x] \ge \varepsilon n$$

$$= \frac{1}{t^{2}}$$

$$= \frac{0^{2}}{\varepsilon^{2} \cdot n}$$

 X_1, \ldots, X_n are independent with same PMF/PDF

$$\boldsymbol{\mu} = E[X_i], \ \boldsymbol{\sigma} = \sqrt{Var[X_i]}, \ X = X_1 + \ldots + X_n$$

We want confidence error $\delta = 10\%$ and sampling error $\varepsilon = 5\%$. How many people should we poll?

$$N = \frac{\sigma^2}{\varepsilon^2 \sigma^2} = \frac{M(1-\mu)}{\varepsilon^2 \sigma^2} \leq \frac{1}{4\varepsilon^2 \sigma^2} = \frac{1}{4(\frac{1}{20})^2 \cdot \frac{1}{10}} = 1000$$

1000 IS ENDUGH (BUT MATBE NOT NECESSARY)

1000 people throw their hats in the air. What is the probability at least 100 people get their hat back?

MARKOV $P(N \ge 100) \le \frac{1}{100} = 0.01$ CHEBYSHEV $P(IN - E[N]) \ge t\sigma) \le \frac{1}{2}$ $= P(N-M) \ge 990)$ ~ 0.0001

I toss a coin 1000 times. What is the probability I get 3 consecutive heads

(a) at least 250 times

(b) at most 50 times $N_{i} = \begin{cases} 1F + HHH AT; \\ 0 F + NOT \end{cases}$ $N = N_1 + N_2 + ... + N_{992}$ M=E[N]=998. = 124.75 $Var[N] = \sum Var[Ni] + \sum Cor[Ni,Nj]$ $Var[N_i] = \frac{1}{B} - \frac{1}{64}$ $C_{ov} [N_{i,1}, N_{i+1}] = P(N_i = N_{i+1} = 1) - P(N_i = 1)P(N_{i+1} = 1) = \frac{1}{16} - \frac{1}{64}$ $C_{ov} [N_{i,1}, N_{i+2}] = P(N_i = N_{i+2} = 1) - P(N_i = 1)P(N_{i+2} = 1) = \frac{1}{32} - \frac{1}{64}$ ALL OTHERS = 0 BY INDEPENDENCE

$$\begin{aligned} V_{orr} [N] &= 998 \cdot (\frac{1}{8} - \frac{1}{64}) + 2.997 \cdot (\frac{1}{16} - \frac{1}{64}) + 2.996 \cdot (\frac{1}{32} - \frac{1}{64}) \\ &= 233.75 \\ \sigma_{N} \approx 15.29 \\ P(N \ge 250) \approx P(N \ge \mu + 8.19\sigma) \le \frac{1}{819^{2}} \approx 0.015 \\ P(N \le 50) \approx P(N \le \mu - 4.89\sigma) \le \frac{1}{489^{2}} \approx 0.042 \end{aligned}$$

 X_1, \ldots, X_n are independent with same PMF/PDF

Let's assume *n* is large.

Weak law of large numbers:

 $X_1 + \ldots + X_n \approx \mu n$ with high probability

 $P(|X-\mu n| \ge t\sigma \sqrt{n}) \le 1 / t^2.$

this suggests $X_1 + \ldots + X_n \approx \mu n + T \sigma \sqrt{n}$ RANDOM VARIABLE $X = X_1 + \ldots + X_n$ X_i independent Bernoulli(1/2)

$$X = X_1 + \ldots + X_n$$

X_i independent Poisson(1)

$$X = X_1 + \ldots + X_n$$
 X_i independent Uniform(0, 1)

 X_1, \ldots, X_n are independent with same PMF/PDF

$$\boldsymbol{\mu} = E[X_i], \ \boldsymbol{\sigma} = \sqrt{Var[X_i]}, \ X = X_1 + \ldots + X_n$$

For every *t* (positive or negative):

$$\lim_{n \to \infty} P(X \le \mu n + t\sigma \sqrt{n}) = P(N \le t)$$

where N is a normal random variable.

eventually, everything is normal

Toss a die 100 times. What is the probability that the sum of the outcomes exceeds 400?

$$X = X_{1} + \dots + X_{100}$$

$$M = E[X] = 100 \cdot 3.5 = 350$$

$$Var[X] = 100 \cdot \left[\frac{1}{6}(1^{2} + \dots + 6^{1}) - 3.5^{2}\right] \approx 291.67$$

$$\sigma = \left[Var[X] \approx 17.08$$

$$P(X \ge 400) \approx P(X \ge M + 2.92\sigma)$$

$$\approx P(Normal(0,1) \ge 2.92)$$

$$CENTPAL LIMIT$$

$$THEOREM$$

$$\approx 0.0018.$$

We want confidence error $\delta = 1\%$ and sampling error $\varepsilon = 5\%$. How many people should we poll?

Drop three points at random on a square. What is the probability that they form an acute triangle?

method	requirements	weakness	
Markov's inequality	$\mathbf{E}[X]$ only	one-sided, often imprecise	
Chebyshev's inequality	$\mathbf{E}[X]$ and $\mathbf{Var}[X]$	often imprecise	
weak law of large numbers	pairwise independence	often imprecise	
central limit theorem	independence of many samples	no rigorous bound	

The strong law of large numbers

The strong law of large numbers

 X_1, \ldots, X_n are independent with same PMF / PDF

$$\boldsymbol{\mu} = E[X_i], X = X_1 + \ldots + X_n$$

If $\mathbf{E}[X_i^4]$ is finite then $\mathbf{P}(\lim_{n \to \infty} X/n = \mu) = 1$