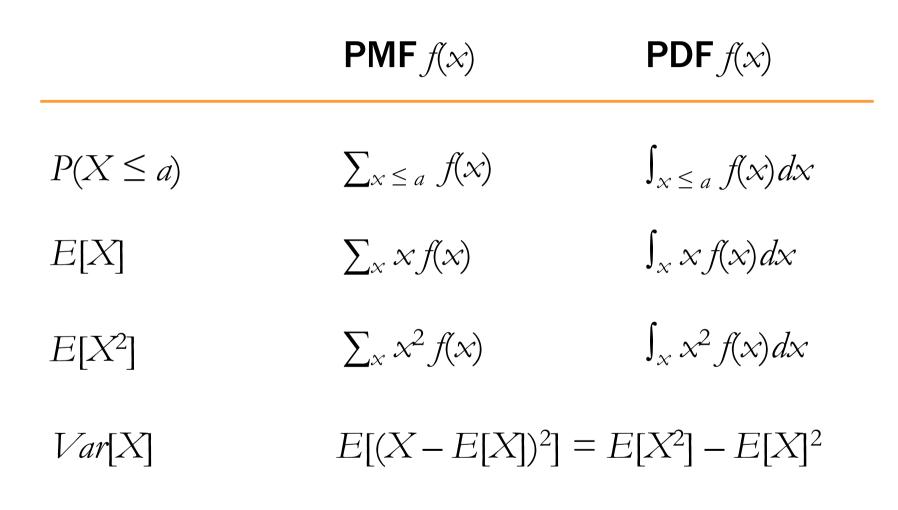
ENGG 2430 / ESTR 2004: Probability and Statistics Spring 2019

7. Continuous Random Variables II

Andrej Bogdanov

One random variable review



Discrete two variables review

$$joint PMF f_{XY}(x, y) = P(X = x, Y = y)$$

Probability of A	$P(A) = \sum_{(x,y) \in A} f_{xy}(x,y)$
Derived RV $Z = g(X, Y)$	$f_{z}(z) = \sum_{x, \gamma : g(x, \gamma) = z} f_{x\gamma}(x, \gamma)$
Marginals	$f_{x}(x) = \sum_{y} f_{xy}(x, y)$
Independence	$f_{XY}(x,y) = f_{X}(x) \cdot f_{Y}(y).$
Expectation	$E[Z] = \sum g(x, y) - f_{xy}(x, y)$

Continuous random variables

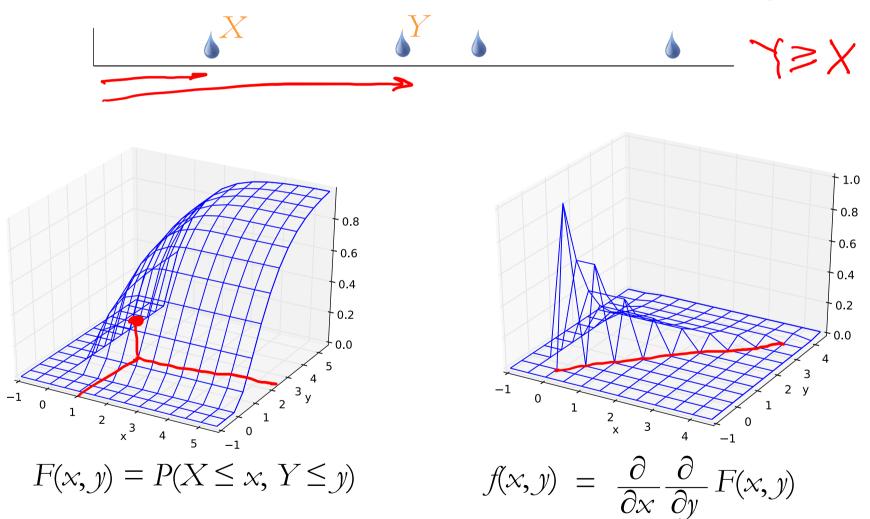
A pair of continuous random variables *X*, *Y* can be specified either by their joint c.d.f.

$$F_{XY}(x, y) = P(X \le x, Y \le y)$$

or by their joint p.d.f.

$$f_{XY}(x, y) = \frac{\partial}{\partial x} \frac{\partial}{\partial y} F_{XY}(x, y)$$
$$= \lim_{\varepsilon, \delta \to 0} \frac{P(x < X \le x + \varepsilon, y < Y \le y + \delta)}{\varepsilon \delta}$$

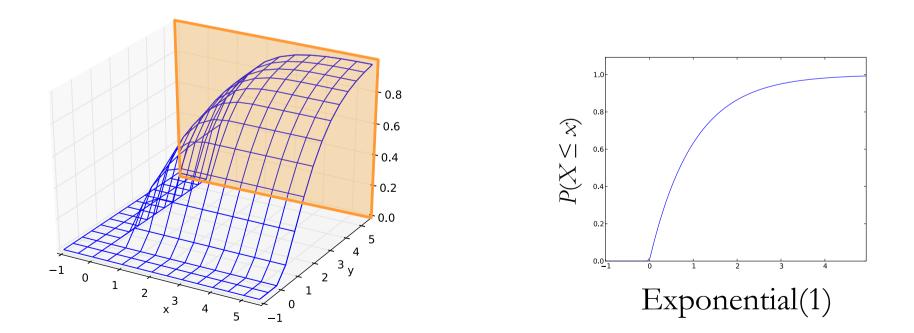
Rain drops at a rate of 1 drop/sec. Let X and Y be the arrival times of the first and second raindrop.



Continuous marginals

Joint CDF $F_{XY}(x, y) = P(X \le x, Y \le y)$

Marginal CDF: $F_X(x) = P(X \le x)$



the continuous cheat sheet

X, *Y* continuous with joint p.d.f. $f_{XY}(x, y)$

Probability of
$$A$$
 $P(A) = \iint_A f_{XY}(x, y) dxdy$

Derived RV
$$Z = g(X, Y)$$
 $f_Z(z) = \int_{(x, y): g(x, y) = z} f_{XY}(x, y) dxdy$

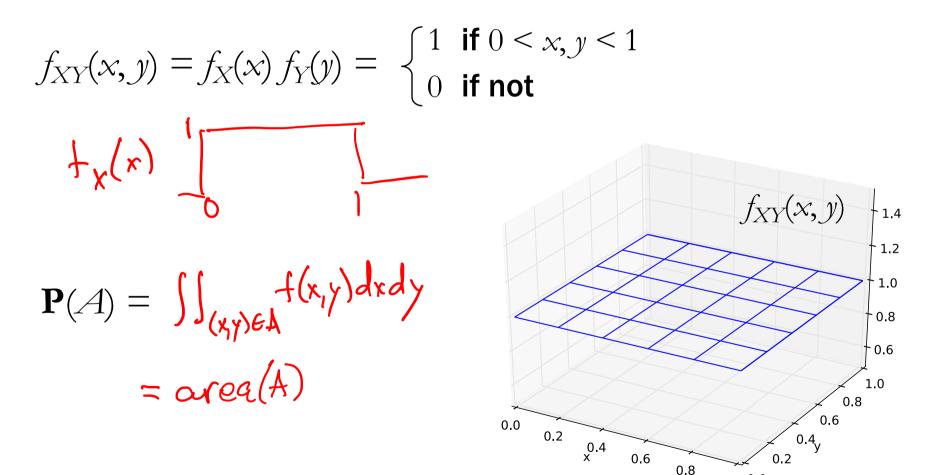
Marginals
$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) \, dy$$

Independence	$f_{XY}(x, y) = f_X(x) f_Y(y)$ for all x, y
--------------	---

Expectation
$$E[Z] = \iint g(x, y) f_{XY}(x, y) dxdy$$

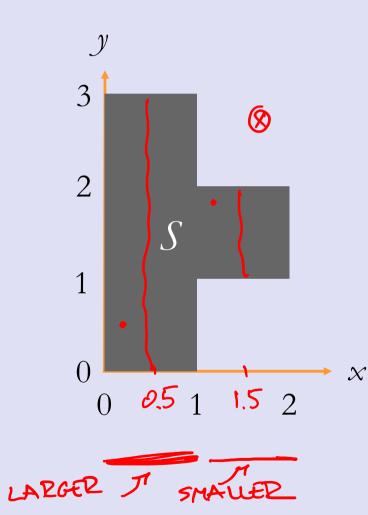
Independent uniform random variables

Let X, Y be independent Uniform(0, 1).

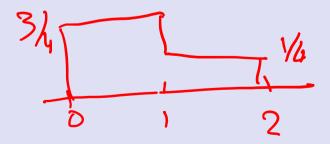


1.0 0.0

Joint PDF of *X*, *Y* is uniform over *S*. What are the marginals?

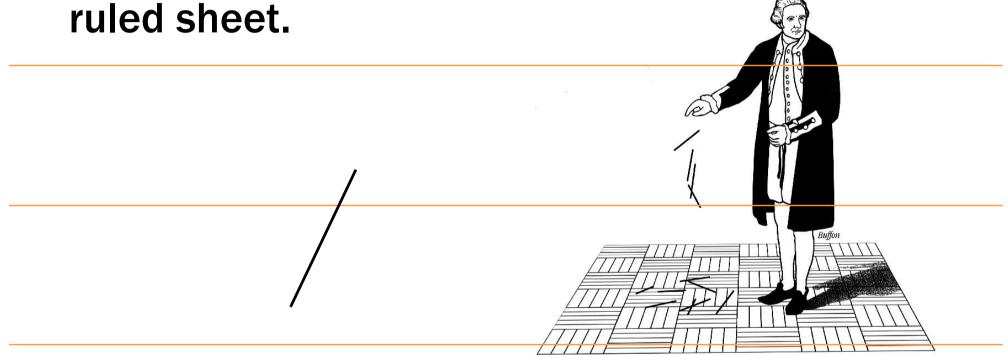


 $\int_{XY} (x_{iy}) = \begin{cases} 1/4 & \text{IF}(x_{iy}) \in S \\ 0 & \text{IF} \quad \text{NOT} \end{cases}$ $J_{x}(x) = \int_{-\infty}^{\infty} f_{xy}(x,y) dy$ = $\begin{cases} 3/4 & 1F \\ 1/4 & 1F \\ 1/4 & 1F \\ 1/4 & 1F \\ 1/4 & 1F \\ 1/2 \\ 1/$



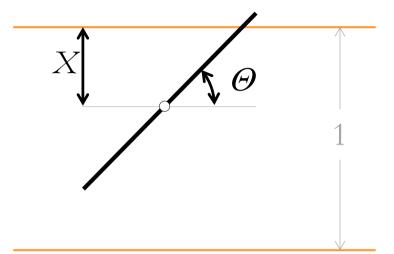
Buffon's needle

A needle of length / is randomly dropped on a



What is the probability that the needle hits one of the lines?

Probability model

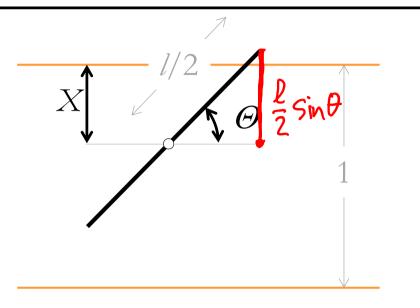


angle
TO IT
X Uniform (0, ½)
Whitform (0, T)
X, DEPENDENT

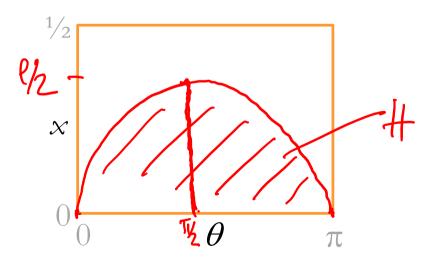
Buffon's needle

PDF:

$$\int_{X, \oplus} (x, \theta) = \frac{2}{\Pi}$$



Event $H: \{ \in \}$ $\frac{1}{2} \sin \theta \ge x$ $H = \{ (\theta, x) : x \le \frac{\theta}{2} \sin \theta \}$



Assume $l \le 1$ (short needle)

$$\mathbf{P}(H) = \iint_{(x,p)\in H} f_{xp}(x,p) dx dp$$

$$= \iint_{(x,p)\in H} f_{xp}(x,p) dx dp$$

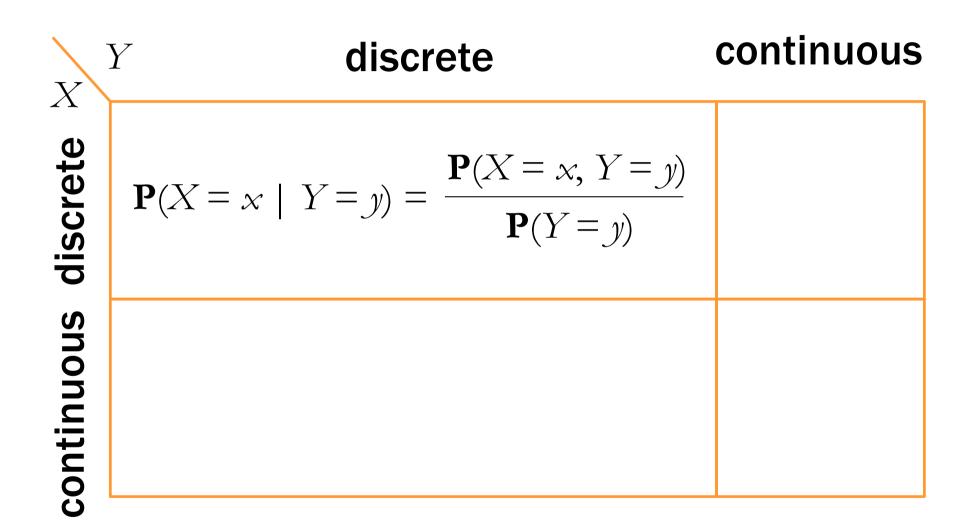
$$= \iint_{(x,p)\in H} f_{xp}(x,p) dx dp$$

$$= \iint_{\theta=0}^{\Pi} \int_{x=0}^{\ell/2} f_{xp}(x,p) dx dp$$

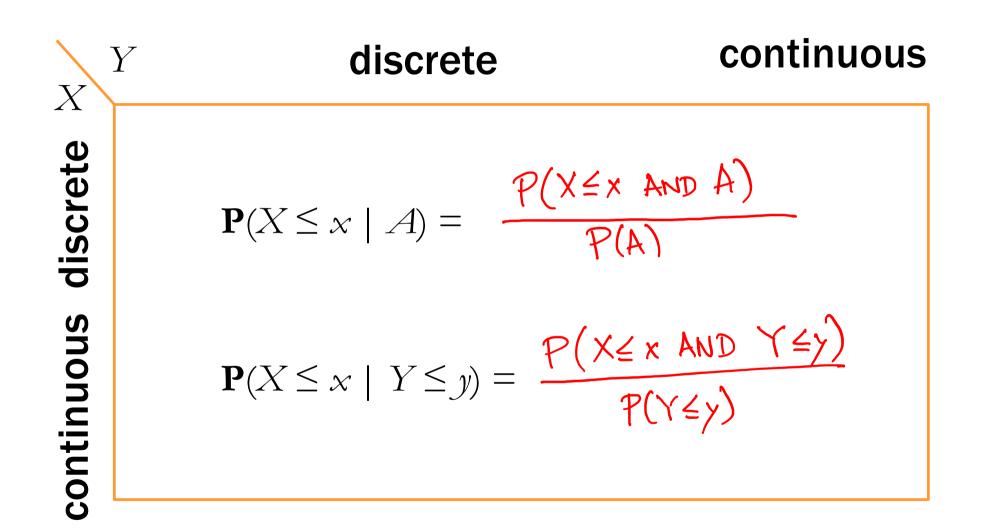
$$= \iint_{\theta=0}^{\Pi} f_{x=0}^{\ell/2} f_{xp}(x,p) dp dp = \frac{2\ell}{\Pi}$$

$$= \iint_{\Pi} \int_{\theta=0}^{\Pi} f_{xp}(x,p) dp dp = \frac{2\ell}{\Pi}$$

Conditioning



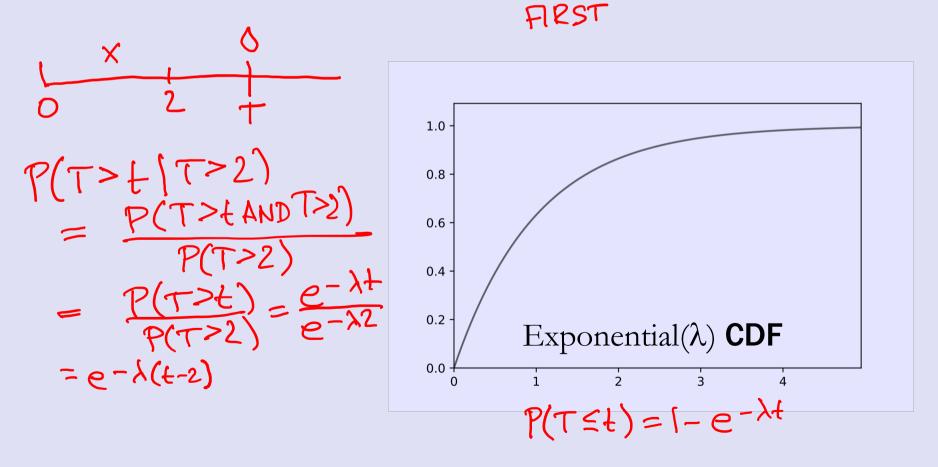
Conditioning

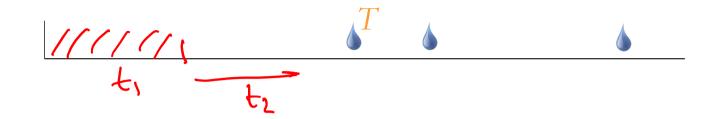


Rain drops at a rate $\lambda = 1/\text{sec.}$

You walk for 2 sec, no drop yet.

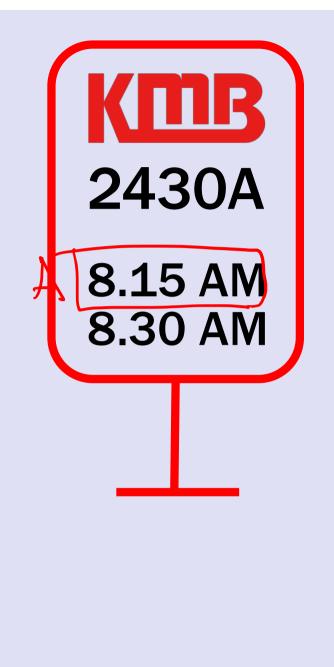
What is the arrival time of next drop?





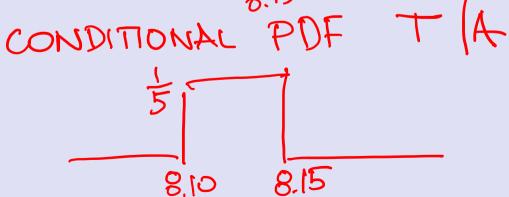
Memorylessness of $\operatorname{Exponential}(\lambda)$ RV:

$$P(T > t_1 + t_2 | T > t_1) = P(T > t_2)$$

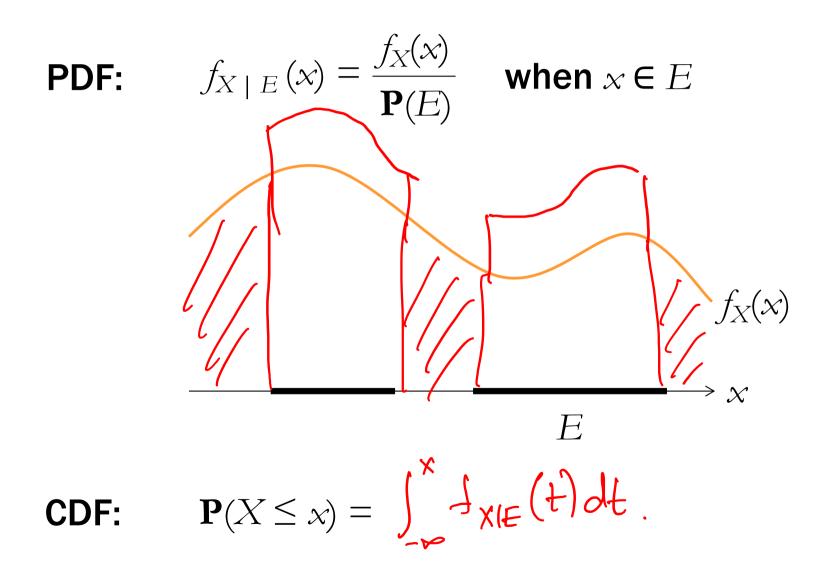


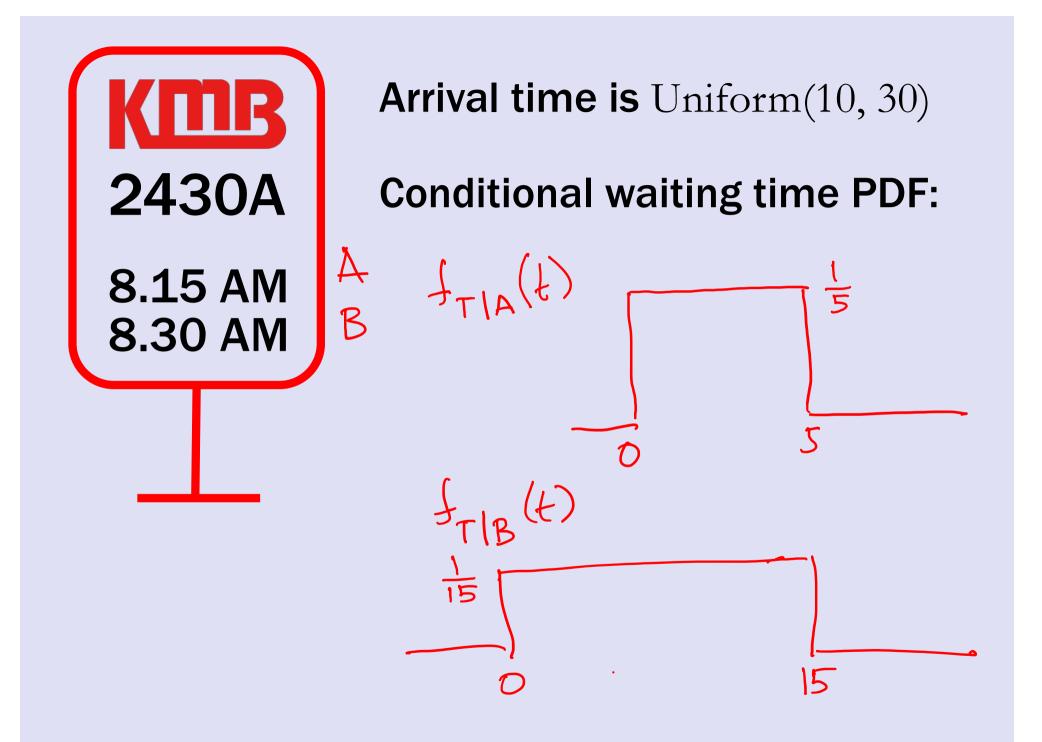
Alice arrives 8.10 - 8.30.

Given she caught the first bus, what is her arrival time? MODEL: T Uniform (8.10, 8.30) $\frac{1}{20}$ PDF $\frac{1}{20}$ PDF $\frac{1}{8.10}$ $\frac{1}{8.50}$

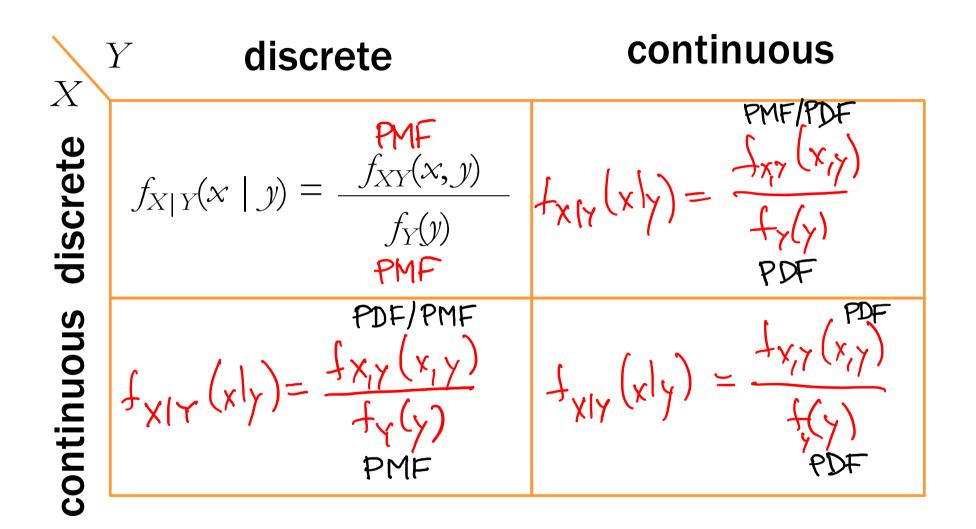


Conditioning a continuous RV on an event



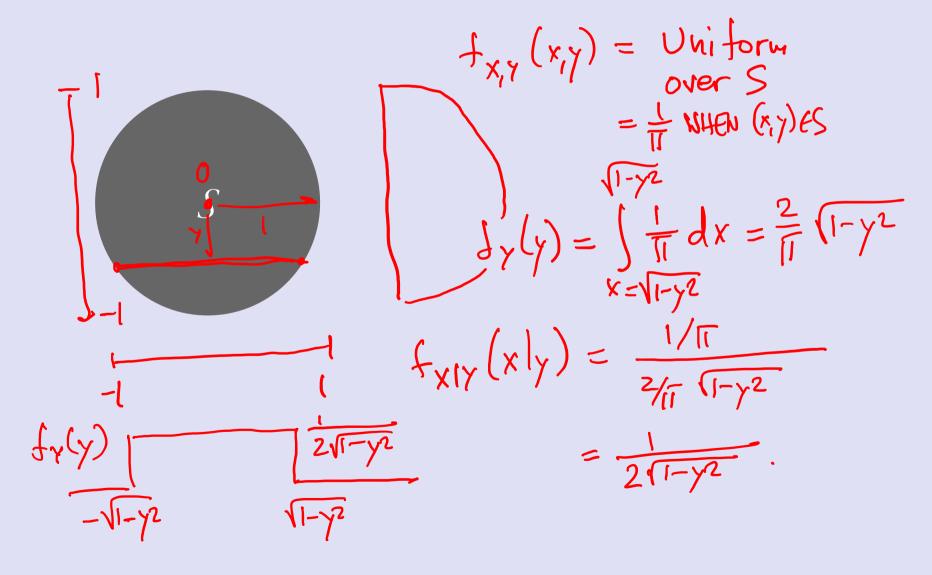


Conditioning



Joint PDF of X, Y is uniform over S. $P_{XIY}(x|y) = \frac{P_{XI}(x,y)}{P_{X}(y)}$ What are the conditional PDFs? Pr(y) γ $P \times I \times (x \mid 2.5) = Uniform (0, 1)$ 3 1/2 2 $P_{X|Y}(x|1.2) = Unifor(0,2)$ $V_{Z_{T}}$ 1 0 2 $P_{x,y}(x,y) = \frac{1}{4} WHEN(x,y) \in S$ 1 () $P_{X|Y}(x|y) = \begin{cases} 1 & \text{when } y \in (Q_i) \cup (2,3) \\ 1/2 & \text{when } y \in (1,2) \end{cases}$ Joint PDF of X, Y is uniform over S.

What are the marginal and conditional PDFs?

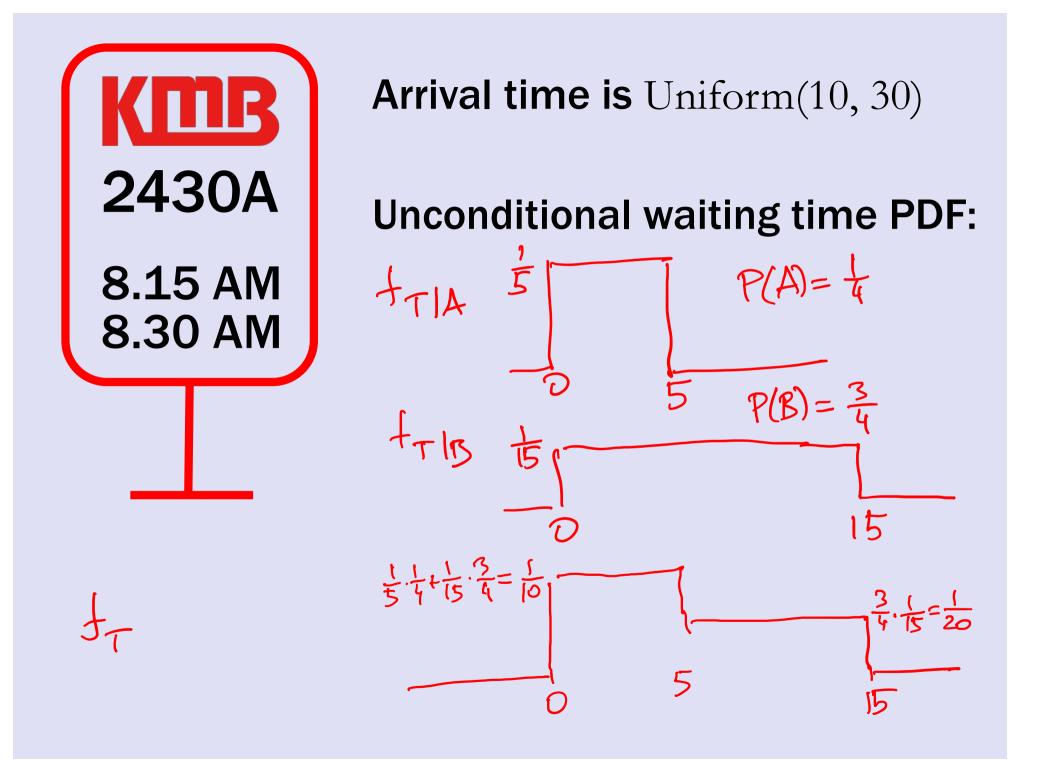


Total probability theorem:

$$f_X(x) = \sum_{y} f_{X|Y}(x \mid y) f_Y(y) \qquad Y \text{ discrete}$$
$$f_X(x) = \int f_{X|Y}(x \mid y) f_Y(y) \, dy \qquad Y \text{ continuous}$$

Total expectation theorem:

 $\mathbf{E}[X] = \sum_{y} \mathbf{E}[X \mid Y = y] f_{Y}(y) \quad Y \text{ discrete}$ $\mathbf{E}[X] = \int \mathbf{E}[X \mid Y = y] f_{Y}(y) \, dy \quad Y \text{ continuous}$



$$\int_{X} \int_{X} \int_{Y} \int_{X} \int_{X} \int_{Y} \int_{X} \int_{Y} \int_{X} \int_{Y} \int_{X} \int_{Y} \int_{Y} \int_{X} \int_{Y} \int_{Y} \int_{X} \int_{Y} \int_{Y} \int_{Y} \int_{Y} \int_{Y} \int_{X} \int_{Y} \int_{Y$$

$$\mathbf{E}[Y] = \int \mathbf{E}[Y|X=x] f_{X}(x) dx = \int x f_{X}(x) dx = \mathbf{E}[X] = 50$$

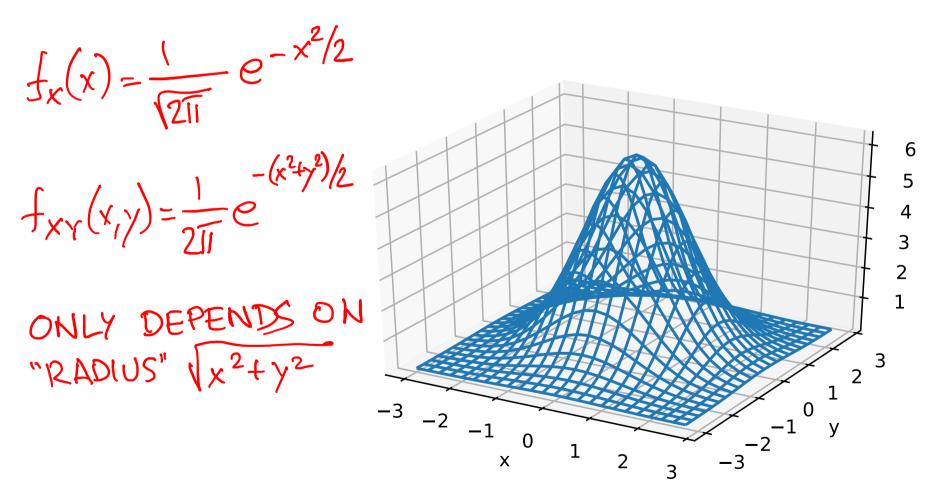
 $X \operatorname{\mathsf{and}} Y \operatorname{\mathsf{are}} \operatorname{\mathsf{independent}} \operatorname{\mathsf{if}}$

$$f_{XY}(x, y) = f_X(x) f_Y(y)$$
 for all x, y

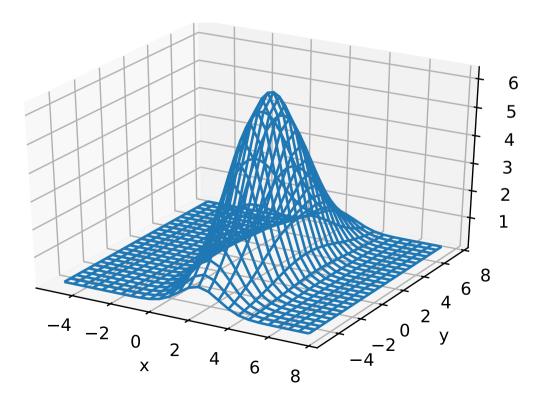
if and only if

 $\mathbf{E}[g(X)h(Y)] = \mathbf{E}[g(X)]\mathbf{E}[h(Y)] \text{ for all } g, h$

X, *Y* are Normal(0, 1)



X is Normal(μ , σ), *Y* is Normal(μ ', σ ')



$$f_{Y|X}(y|x) = \frac{f_{X|Y}(x|y)f_{Y}(y)}{f_{X}(x)}$$

$$= \frac{f_{X|Y}(x|y)f_{Y}(y)}{\sum_{\gamma} f_{X|Y}(x|y)f_{Y}(y)} \quad \text{IF } y \text{ DISCRETE}$$

$$= \frac{f_{X|Y}(x|y)f_{Y}(y)}{\int_{Y} f_{Y}(y)f_{Y}(y)} \quad \text{IF } y \text{ CONTINUOUS}$$

Rain falls at $Poisson(\Lambda)$ drops/sec N Λ itself is Exponential(1)

You're hit by 2 drops. What is your guess for Λ ?

