ENGG 2430 / ESTR 2004: Probability and Statistics Spring 2019

4. Expectation and Variance Joint PMFs

Andrej Bogdanov

The expected value (expectation) of a random variable X with p.m.f. p is

$$E[X] = \sum_{x} x p(x)$$

= 1. p(1) + 2p(2) + ...

N = number of Hs

$$\frac{x \circ 1}{p(x) / 2}$$
 $E[N] = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$

Expected value

The expectation is the average value the random variable takes when experiment is done many times

F = face value of fair 6-sided die

If $\sum_{k=1}^{n}$ appears k times, you win \$k. Bihomial (3,5)

If it doesn't appear, you lose \$1.

 $p(x) (\frac{5}{6})^{2} 3 \cdot \frac{1}{6} \cdot \frac{5}{6}^{2} 3 \cdot (\frac{1}{6})^{2} \cdot \frac{3}{6} (\frac{1}{6})^{3}$ $E[P] = -1 \cdot \left(\frac{5}{6}\right)^{3} + 1 \cdot 3 \cdot \frac{1}{6} \left(\frac{5}{6}\right)^{2} + 2 \cdot 3 \left(\frac{1}{6}\right)^{2} \cdot \frac{5}{6} + 3 \cdot \left(\frac{1}{6}\right)^{2}$ =-003...

35/40 5/40

4: F	RST TA	ue \$20	D	VIDEO GAMES	
$\frac{X}{D(n)}$	200	600	200, 60	\$200	80%
ره ده= =[A]=	, 0%.50% = 0.4 200.0.4+60	=0.4 =0.4 00.0.4 = 320	N N	\$400	50%
B: FIR	2ST TH	LE \$40	0	\$600	INDEP
$\frac{\times}{2(x)}$	0 400 50% Foil.4	600 101. 50180	<u>у.</u>	\$810	
E[B] 7	=0.1 400 · 0.1 -	=0,4 600 · 0,4 =	280	\$1000	

Expectation of a function

p.m.f. of X:
$$\frac{x \quad 0 \quad 1 \quad 2}{p(x) \quad 1/3 \quad 1/3 \quad 1/3}$$

$$E[X] = \quad 0 \cdot \frac{1}{3} + \left| \cdot \frac{1}{3} + 2 \cdot \frac{1}{3} = 1 \qquad \frac{1}{9(x)} \quad \frac{1}{1/3} \quad$$

$$\mathbf{E}[(X-1)^2] = \frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 1 = \frac{2}{3} \quad \frac{\times 0}{p(x) \frac{1}{3} \frac{2}{3}}$$

Expectation of a function, again

p.m.f. of X:
$$\frac{x \quad 0 \quad 1 \quad 2}{p(x) \quad 1/3 \quad 1/3 \quad 1/3}$$

 $\mathbf{E}[X] = \mathbf{1}$

$$\mathbf{E}[X-1] = \frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot 6 + \frac{1}{2} \cdot 1 = 0$$
$$\mathbf{E}[(X-1)^2] = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 1 = \frac{2}{3}$$

 $speed V = \frac{distance}{timeT}$ $T = \frac{1}{V}$

 $E[V] = 60\% \cdot 5 + 40\% \cdot 30 = 15$ $\frac{1}{E[V]} = 0.6 \text{ hrs}$

1/5 $E[T] = 60\% + 40\% + \frac{1}{50}$ $\approx 0.133 \text{ hrs}$ 1/30 40% 60% p(x)جب ا

 $E[T] = E[] \neq i$

Joint probability mass function

The joint PMF of random variables *X*, *Y* is the bivariate function

There is a bag with 4 cards:

1 2 3 4
$$\chi = 1$$
 STCARD
 $\chi = 2$ ND CARD

You draw two without replacement. What is the joint PMF of the face values?

$$x \neq y$$

$$\int P(X=x, Y=y)$$

$$= P(X=x) P(Y=y(X=x))$$

$$= \frac{1}{4} \cdot \frac{1}{3}$$

What is the PMF of the sum? \leq

$$\begin{array}{c} x & y & 1 & 2 & 3 & 4 \\ 1 & 0 & 1/2 & 1/2 \\ 2 & 1/2 & 0 & 1/2 \\ 3 & 1/2 & 1/2 & 1/2 \\ 4 & 1/2 & 1/2 & 1/2 \\ 4 & 1/2 & 1/2 & 1/2 \\ 4 & 1/2 & 1/2 & 1/2 \\ \end{array}$$

What is the expected value? $E[5] = 3 \cdot \frac{2}{12} + 4 \cdot \frac{2}{12} + 5 \cdot \frac{4}{12} + 6 \cdot \frac{2}{12} + \frac{7 \cdot \frac{2}{12}}{12} = 5$

PMF and expectation of a function

$$Z = f(X, Y) \text{ has PMF}$$

$$p_Z(z) = \sum_{x, y: f(x, y) = z} p_{XY}(x, y)$$

and expected value

$$\mathbf{E}[Z] = \sum_{x, y} f(x, y) p_{XY}(x, y)$$

What if the cards are drawn with replacement? JOINT PHF: p(x,y)=to FOR ALL X, Y $E[S] = \frac{1}{16} \left(2+3+4+5 + 6 + 7 + 4+5+6 + 7 + 5+6+7 + 8 \right)$ 1 2 3 4 1 1/6 1/6 1/6 1/6 2 1/6 1/6 1/6 1/6 3 1/6 1/6 1/6 1/6 4 1/6 1/6 1/6 1/6 = 5

Marginal probabilities

 $P(X = x) = \sum_{y} P(X = x, Y = y)$

Linearity of expectation

$$\begin{split} E[X+Y] &= \sum_{x,y} (x+y) \cdot R(x,y) \\ &= \sum_{x} R(x,y) + \sum_{y} R(x,y) \\ &= \sum_{x} R(x) + \sum_{y} P(y) \\ &= E[X] + E[Y] \end{split}$$

For every two random variables X and Y

$$\mathbf{E}[X+Y] = \mathbf{E}[X] + \mathbf{E}[Y]$$

WITHOUT REPLACEMENT

$$\frac{x}{P_{x}(x)} \frac{2}{Y_{4}} \frac{3}{Y_{4}} \frac{4}{Y_{4}} \frac{1}{Y_{4}} \frac{2}{Y_{4}} \frac{3}{Y_{4}} \frac{4}{Y_{4}} \frac{1}{Y_{4}} \frac$$

WITH REPLACEMENT

SAME

SAME

SAME

 $\mathbf{E}[X + Y] = ?$ $f = \sum_{x \in X} \sum_{y \in X} \sum_{x \in Y} \sum_{y \in X} \sum_{x \in Y} \sum_{y \in Y} \sum_{x \in Y} \sum_$ ZND DIE E[X+Y] = E[X] + E[Y]= 3.5 + 3.5 = 7

Perform a trial that succeeds with probability p and fails with probability 1 - p.

$$\begin{array}{cccc} x & 0 & 1 \\ \hline p(x) & 1-p & p \end{array}$$

If X is Bernoulli(p) then

$$E[X] = p$$

Binomial(*n*, *p*): Perform *n* independent trials, each of which succeeds with probability *p*.

 $X = \text{number of successes} = X_1 + X_2 + \dots + X_n$

n people throw their hats in a box and pick one out at random. How many on average get back their own?

X = # PEOPLE THAT GET OWN HAT $X = X_1 + \dots + X_n$ $X_i = \begin{cases} 1 \text{ IF ith REPSON GOT OWN HAT} \\ 0 \text{ IF NOT} \end{cases}$ $E[X] = E[X] + E[X_{0}] + ... + E[X_{0}]$ $= \frac{1}{h} + \frac{1}{h} + \dots + \frac{1}{h}$

Poisson(λ) approximates Binomial(n, λ/n) for large n

Raindrops

Rain is falling on your head at an average speed of 2.8 drops/second.

 $X_i = PRESENCE OF DROP IN i-TH CENTISECOND$ $MODEL: <math>X = X_1 + ... + X_{100}$ INDEPENDENT Binomial(100, p) 100 p = 2.8 p = 2.8/100Poisson(2.8): $\lim_{n \to \infty} Binomial(n, 2.8/n)$

Rain falls on you at an average rate of 3 drops/sec.

When 100 drops hit you, your hair gets wet.

You walk for 30 sec from MTR to bus stop.

What is the probability your hair got wet?

You have three investment choices:

A: put \$25 in one stock

B: put \$1/2 in each of 50 unrelated stocks

C: keep your money in the bank

Which do you prefer?

Probability model

Each stock Each stock loses all value with probability ¹/₂

Different stocks perform independently

E[A] = 25E[B] = 25E[C] = 25 Let $\mu = \mathbf{E}[X]$ be the expected value of *X*.

The variance of X is the quantity

$$\mathbf{Var}[X] = E[(X - \mu)^2]$$

The standard deviation of *X* is $\sigma = \sqrt{Var[X]}$

It measures how close X and μ are typically.

50 \bigcirc 1/2 1/2 p(9) $Var[A] = \frac{1}{2}(-25)^2 + \frac{1}{2}\cdot 25^2$ $= 25^{2}$ $\sigma = 25$

23 P(c) Var[C] = O

0=0

Another formula for variance

$$Var [X] = E[(X-\mu)^{2}] \qquad \mu = E[X]$$

= $E[X^{2} + \mu^{2} - 2 \cdot X \cdot \mu]$
= $E[X^{2}] + E[\mu^{2}] - E[2 \cdot X \cdot \mu]$
= $E[X^{2}] + \mu^{2} - 2 \cdot \mu \cdot E[X]$
= $E[X^{2}] + \mu^{2} - 2 \cdot \mu \cdot M$
= $E[X^{2}] - \mu^{2}$
= $E[X^{2}] - \mu^{2}$
= $E[X^{2}] - \mu^{2} \ge 0$

E[A] = 25 $E[A^{2}] = \frac{1}{2} \cdot 0^{2} + \frac{1}{2} \cdot 50^{2}$ $Var[A] = \frac{1}{2} \cdot 50^{2} - 25^{2} = 25^{2}$

 $\frac{c}{P(c)} \frac{25}{1}$ E[C] = 25 $E[C^{2}] = 25^{2}$ $Var[C] = 25^2 - 25^2 = 0$

$$E[X] = ?$$

$$Var[X] = ?$$

$$E[X] = \frac{1}{c}(1+2+3+4+5+6) = \frac{1}{c} \cdot \frac{6\cdot7}{2} = 3.5$$

$$E[X^{2}] = \frac{1}{c}(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}) = \frac{1}{c} \cdot \frac{6\cdot7\cdot15}{6} = \frac{7\cdot13}{6}$$

$$Var[X] = \frac{7\cdot13}{6} - 3.5^{2}$$

In 2011 the average household in Hong Kong had 2.9 people.

Take a random person. What is the average number of people in his/her household?

average household size

average size of random $\sum_{c} \cdot 5 + \frac{1}{c} \cdot 1$ person's household $= \frac{26}{c} = 4.33...$

What is the average household size?

household size12345more6% of households16.625.624.421.28.73.5

From Hong Kong Annual Digest of Statistics, 2012

Probability model 1

Households under equally likely outcomes

X = number of people in the household

 $E[X] = | \cdot 0.166 + 2 \cdot 0.256 + \dots + 5 \cdot 0.087 + 6 \cdot 0.035$

= 2.903

What is the average household size?

Probability model 2

People under equally likely outcomes

Y = number of people in the household

$$E[Y] = (P(Y=1) + 2P(Y=2) + ... + 6P(Y=6))$$

$$E[Y] = (P(Y=1) + 2P(Y=2) + ... + 6P(Y=6))$$

$$E[Y] = \frac{\#PPL \text{ IN } Y - PELSON HOUSE}{\#PPL \text{ IN } Y - PELSON HOUSE} = \frac{Y \cdot P(X=y)}{P(Y=1) + ... + 6P(X=6)}$$

$$P(Y=1) = \frac{1}{1 \cdot 16.6 + 2 \cdot 25.6 + ... + 6 \cdot 35}$$

 $E[Y] = \sum_{y} y \cdot P(Y=y)$ $= \sum_{y \in Y} \frac{y \cdot P(x = y)}{\sum_{x} x \cdot P(x = x)}$ $\sum_{y} y^2 P(X=y)$ $\sum_{x} x \cdot P(X=x)$ $\frac{E[X^{2}]}{E[X]^{2}} = \frac{10.213}{2.903} \approx 3.518$

- *X* = number of people in a random household
- Y = number of people in household of a random person

$$\mathbf{E}[Y] = \frac{\mathbf{E}[X^2]}{\mathbf{E}[X]} \ge \frac{\mathbf{E}[X]^2}{\mathbf{E}[X]} = \mathbf{E}[X]$$

Because $\operatorname{Var}[X] \ge 0$,

$$\mathbf{E}[X^2] \ge (\mathbf{E}[X])^2$$

So $E[Y] \ge E[X]$. The two are equal only if all households have the same size.