Practice questions

1. X is a Geometric(Θ) random variable, where Θ itself is a random variable with PDF $f_{\Theta}(\theta) = 2\theta$ where $0 \le \theta \le 1$. What are the MAP (Maximum a Posteriori) estimator and ML (Maximum Likelihood) estimates for Θ ?

Solution:

(a) The conditional PDF of X is $f_{X|\Theta}(x|\theta) = \theta(1-\theta)^{x-1}$. Using Bayes' rule, the posterior PDF is

$$f_{\Theta|X}(\theta|x) \propto f_{\Theta}(\theta) f_{X|\Theta}(x|\theta) \propto \theta \cdot \theta (1-\theta)^{x-1}$$

when $0 \le \theta \le 1$. The MAP rule selects $\hat{\theta}$ that maximizes the posterior (or equivalently its numerator, since the denominator is a positive constant w.r.t. θ). The derivative $(d/d\theta)\theta^2(1-\theta)^{x-1}$ equals zero when $\theta = 0$, 1, or 2/(1+x). The maximum is attained at $\hat{\theta} = 2/(1+x)$ for all x. This is the MAP estimate.

- (b) The ML rule chooses the value of θ that maximizes $f_{X|\Theta}(x|\theta) = \theta(1-\theta)^{x-1}$. The derivative of this function is zero when $\theta = 1$ or $1 \theta \theta x + \theta = 0$, which has solution $\theta = 1/x$. The maximum is in fact attained at $\hat{\theta} = 1/x$ for all x, so this is the ML estimate.
- 2. Jason has two 4-sided dice in a bag. Die A has sides 1, 2, 3, 4 and die B has sides 2, 2, 3, 3. Jason picks one of the dice randomly, rolls it twice, and reports the sum S of the rolls. Your task is to guess which die Jason rolled based on the value of S.
 - (a) For which values of S would you guess that Jason rolled die A?
 - (b) If you guess like in part (a), what is the probability that your guess is wrong?

Solution:

(a) Let Θ be the die and S be the sum. By the MAP rule for uniform priors, you should guess that value of Θ for which $P(S = s \mid \Theta = \theta)$ is larger. The PMFs are

$\theta \setminus s$							
А	1/16	1/8	3/16	1/4	3/16	1/8	1/16
В	0	0	1/4	1/2	1/4	0	0

so the MAP guess is A when S is 2, 3, 7, or 8, and B when S is 4, 5, or 6.

(b) The event of a wrong guess is $\Theta = A$ and $S \in \{4, 5, 6\}$. The probability of this event is

$$P(S \in \{4, 5, 6\} \mid \Theta = A) P(\Theta = A) = \frac{5}{8} \cdot \frac{1}{2} = \frac{5}{16}$$

- 3. A food processing company packages honey in glass jars. The volume of honey in a random jar is a Normal(μ , 5) millilitre random variable for an unknown value of μ . The government wants to verify that μ is at least 100 millilitres.
 - (a) The government proposes the following test: Choose a random jar and verify that the jar has at least t millilitres of honey. Which value of t should be chosen so that a complying company passes the test with probability at least 95%?

(b) The ACME company jars contain Normal(95, 5) millilitres of honey. What is the probability that ACME passes the test?

Solution:

- (a) Let N be standard normal and V be the volume of a jar of honey. So, $V = 5N + \mu$. A complying company passes the test if $P(V \ge t) \ge 0.95$. That is $P(N \ge (t-\mu)/5) \ge 0.95$. Obviously if a company has honey with mean volume 100 passes the test with probability 95% then all complying companies will pass the test with higher probability. Then we have $t = 5\Phi^{-1}(0.05) + 100 \approx 91.775$, where Φ is the CDF of N.
- (b) $\Phi((91.775-95)/5) = 0.2595$ is the probability that the sampled jar has less than 91.775 millilitres of honey, i.e. the ACME company fails the test. Therefore, the probability that the company passes the test is $\approx 1 0.2595 = 0.7405$.
- 4. A random variable X is Normal(1, 1) with probability p and Normal(-1, 1) with probability 1 p, where the parameter p is unknown.
 - (a) What is the PDF of X?
 - (b) What is the maximum likelihood estimate of p given that X = x?
 - (c) Let X_1 and X_2 be independent samples of X. What is the maximum likelihood estimate of p given that $X_1 = x_1$ and $X_2 = x_2$?

Solution:

(a) Let Y be the random variable indicating whether X has mean 1. Then the PDF of X is

$$f_X(x;p) = f_{X|Y}(x|1)f_Y(1) + f_{X|Y}(x|0)f_Y(0)$$

= $\frac{p}{\sqrt{2\pi}}e^{-\frac{(x-1)^2}{2}} + \frac{1-p}{\sqrt{2\pi}}e^{-\frac{(x+1)^2}{2}}$
= $\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2+1}{2}}(p(e^x - e^{-x}) + e^{-x})$

(b) The PDF of X is linear in p. It has non-negative slope if and only if $e^x \ge e^{-x}$, that is when $x \ge 0$. So the ML estimate of p is

$$\hat{p} = \operatorname*{arg\,max}_{p} f_X(x;p) = \begin{cases} 1, & \text{if } x \ge 0\\ 0, & \text{otherwise} \end{cases}$$

(c) The random variable (X_1, X_2) has PDF $f_{X_1, X_2}(x_1, x_2; p)$. By independence it is equal to $f_{X_1}(x_1; p) f_{X_2}(x_2; p)$. We wish to maximize this quantity w.r.t. p so it is sensible to maximize the log of it instead (log is an increasing function so the maximizing p remains unchanged). The log of the PDF equals

$$\log f_{X_1,X_2}(x_1,x_2;p) = \log f_{X_1}(x_1;p) + \log f_{X_2}(x_2;p)$$

= $\log \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{x_1^2+1}{2}} (p(e^{x_1} - e^{-x_1}) + e^{-x_1}) \right)$
+ $\log \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{x_2^2+1}{2}} (p(e^{x_2} - e^{-x_2}) + e^{-x_2}) \right)$
= $\log (p(e^{x_1} - e^{-x_1}) + e^{-x_1}) + \log (p(e^{x_2} - e^{-x_2}) + e^{-x_2}) + C,$

where C is a constant independent of p that doesn't affect the maximizer. The function is differentiable for all values of x_1, x_2 because $p \leq 1$. So we could set its derivative to 0 to find its maximizer:

$$\begin{aligned} \frac{d}{dp} (\log \left(p(e^{x_1} - e^{-x_1}) + e^{-x_1} \right) + \log \left(p(e^{x_2} - e^{-x_2}) + e^{-x_2} \right)) \\ &= \frac{e^{x_1} - e^{-x_1}}{p(e^{x_1} - e^{-x_1}) + e^{-x_1}} + \frac{e^{x_2} - e^{-x_2}}{p(e^{x_2} - e^{-x_2}) + e^{-x_2}} \\ &= \frac{e^{2x_1} - 1}{p(e^{2x_1} - 1) + 1} + \frac{e^{2x_2} - 1}{p(e^{2x_2} - 1) + 1} \\ &= (p(e^{2x_2} - 1) + 1)(e^{2x_1} - 1) + (p(e^{2x_1} - 1) + 1)(e^{2x_2} - 1) \end{aligned}$$

from where, assuming $x_1 \neq 0$ and $x_2 \neq 0$, zero derivative is attained at

$$p^* = \frac{2 - e^{2x_1} - e^{2x_2}}{2(e^{2x_1} - 1)(e^{2x_2} - 1)}.$$
(1)

If $x_1 = 0$ then $\log f_{X_1,X_2}$ is a linear function of p with slope $e^{x_2} - e^{-x_2}$. In this case $\hat{p} = 1$ if $x_2 > 0$ and $\hat{p} = 0$ if $x_2 < 0$. The same is true for x_2 . If $x_1 = x_2 = 0$ then f_{X_1,X_2} is constant and any p maximizes it. The derivative of fraction of the form $\frac{a}{ax+b}$ is $-(\frac{a}{ax+b})^2$, so the second derivative of $\log f_{X_1,X_2}$ must be negative at the above value of p, thus it gives the maxima. One can verify that

$$\hat{p} = \begin{cases} 0, & \text{if } x_2 \leq \frac{1}{2} \ln(2 - e^{2x_1})) \\ 1, & \text{if } x_2 \geq x_1 - \frac{1}{2} \ln(2e^{2x_1} - 1)) \\ p^*, & \text{otherwise.} \end{cases}$$

5. Coin A has probability of heads 40%. Coin B has probability of tails 40%. One of these coins is tossed is n times. How large does n need to be so that you can identify the coin with probability about 99%? (Hint: Use a normal approximation, or write a computer program.)

Solution: Let A be the event that coin A was tossed and H be the number of heads in n tosses. We have E[H | A] = 0.4n and $E[H | \overline{A}] = 0.6n$. The standard deviations are $\sqrt{0.24n}$. Assume H is normal, then $H = N\sqrt{0.24n} + 0.4n$ where N is standard normal. Suppose we identify the coin as A if there are less than t heads in n tosses and as B otherwise. As in both cases have the same standard deviation and the CDFs of H are symmetric along 0.5n, if t = 0.5n then $P(H > 0.5n | A) = P(H < 0.5n | \overline{A})$. Therefore,

$$P(N\sqrt{0.24n} + 0.4n \ge 0.5n) = 0.01$$
$$\Phi(\frac{0.1}{\sqrt{0.24}}\sqrt{n}) = 0.01$$
$$\frac{0.1}{\sqrt{0.24}}\sqrt{n} = 2.327$$
$$n \approx 130$$

where Φ is the CDF of N.