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1. Each of the 200 ENGG2430 students shows up to class independently with probability 0.9
and asks Poisson(0.05) questions in there. Let S be the number of students in class and Q
the total number of questions asked. Find (a) E[S], (b) E[Q|S], (c) E[Q], (d) Var[E[Q|S]], (e)
Var[Q|S], (f) E[Var[Q|S]], (g) Var[Q].

Solution: Let Qi be the number of question asked by the i-th student present in class;
Q = Q1 + · · ·+QS .

(a) E[S] = 200 · 0.9 = 180.

(b) E[Q|S] =
∑S

i=1 E[Qi] = S · 0.05 = 0.05S by linearity of expectation.

(c) E[Q] = E[E[Q|S]] = E[0.05S] = 0.05 · 180 = 9 by (b).

(d) Var[E[Q|S]] = Var[0.05S] = 0.052 Var[S] = 0.052 · (200 · 0.9 · 0.1) = 0.045 by (b).

(e) Var[Q|S] =
∑S

i=1 Var[Qi] = S · 0.05 = 0.05S by independence of Qi’s.

(f) E[Var[Q|S]] = E[0.05S] = 9 by (e).

(g) Var[Q] = Var[E[Q|S]] + E[Var[Q|S]] = 9.00045 by (d) and (f).

2. You flip a coin with unknown probability of heads p. You want to learn the value of p.

(a) Alice suggests the following estimator P̂A: Keep flipping the coin until you see the first
head in the N -th flip. Set P̂A = 1/N .

(b) Bob suggests another estimator P̂B: Flip the coin 10 times, count the number of heads
Y and set P̂B = Y/10.

What is the expectation of each estimator in terms of p? Which one is better?

Solution: P̂A has expectation

E[P̂A] =
∞∑
n=1

1

n
· (1− p)n−1p =

p

1− p

∞∑
n=1

(1− p)n

n
≈ p

1− p
· (− log p),

since the infinite series is the Taylor expansion of − log p. P̂B has expectation

E[P̂B] = E

[
Y

10

]
=

1

10
E[Y ] =

10p

10
= p.

The expectation of P̂A 6= p in general while P̂B does; P̂A is said to be biased and P̂B unbiased.

In the next two questions, estimate the quantity of your interest using the method of your choice:
Markov’s inequality, Chebyshev’s inequality, or the Central Limit Theorem. Justify why the method
is applicable and discuss the quality of the estimate.
Summary of the assumption and result of the three methods:

• Markov’s inequality: P(X ≥ a) ≤ E[X]/a.

– Applies for any non-negative random variable X, and any a > 0 (a > E[X] for a
meaningful bound).

– Requires only E[X], useful when it is small.

– Is an upper bound to a one-sided (right tail) probability.



• Chebyshev’s inequality: P(|X − µ| ≥ tσ) ≤ 1/t2, where µ = E[X], σ =
√

Var[X].

– Applies for any random variable X (with finite µ, σ), and any t (t > 1 for a meaningful
bound).

– Requires both expectation and variance of X.

– Is an upper bound to a two-sided probability.

• Central Limit Theorem: (X−µX)/σX ≈ Normal(0, 1), where X = X1+ · · ·+Xn are indepen-
dent and have the same PDF/PMF, µX = E[X] = nE[Xi], σX =

√
Var[X] =

√
nVar[Xi].

– Applies for X being sum of many (usually n ≥ 30) independent random variables; no
restriction on distribution of Xi’s.

– Requires both E[Xi] and Var[Xi].

– Approximates the CDF of X. Using the axioms of probability, we can use it to approx-
imate other events of interest (e.g. P(X < −5 or X > 7)).

Roughly speaking, in terms of generality, Markov’s inequality > Chebyshev’s inequality > CLT; and
in terms of tightness, Markov’s inequality < Chebyshev’s inequality < CLT (if n is large enough).

3. The following exam statistics are posted on the course website:

section no. students average grade std. dev.

A 30 65 5
B 20 70 10

what can you say about the number of students whose exam grade was 30 or below?

Solution: Let XA and XB be the grade of a random student in section A and section B,
respectively. The table tells us that µA = E[XA] = 65, σA =

√
Var[XA] = 5, µB = E[XB] =

70, σB =
√

Var[XB] = 10. By Chebyshev’s inequality, for a random student in section A,

P(XA ≤ 30) = P(XA ≤ µA − 7 · σA) ≤ P(|XA − µA| ≥ 7σA) ≤ 1/49 ≈ 0.0204.

Although we are only interested in the probability that XA is 7 standard deviations smaller
than its mean, Chebyshev’s inequality only tells us the probability of the possibly larger event
that XA is either 7 standard deviations smaller or 7 standard deviations larger than its mean.
This is already a tremendously small probability – about 2%.

Similarly, for a random student in section B,

P(XB ≤ 30) = P(XB ≤ µB − 4 · σB) ≤ P(|XB − µB| ≥ 4σB) ≤ 1/16 ≈ 0.00625.

Since there are 30 students in section A, at most 1/49 · 30 students must have received 30
or below, so nobody got that kind of grade. In section B, at most 1/16 · 20 students got 30
or below, so at most one student in the whole class could have received 30 or below on the
exam.

Alternative Solution: Alternatively, we can first calculate the statistics for a random
student X in the whole course and then apply Chebyshev’s inequality to X. Let X be a
random student and Y their section (using 1 and 2 for sections A and B). Then E[X|Y ] takes
value 65 with probability 3/5 and 70 with probability 2/5.

By total expectation theorem,

µ = E[X] = E[E[X|Y ]] = 65 · 3/5 + 70 · 2/5 = 67.



By total variance theorem Var[X] = Var[E[X|Y ]] + E[Var[X|Y ]], where

Var[E[X|Y ]] = (65− 67)2 · 3/5 + (70− 67)2 · 2/5 = 6,

E[Var[X|Y ]] = 52 · 3/5 + 102 · 2/5 = 55,

hence standard deviation of X is σ =
√

61 ≈ 7.8103. Chebyshev’s inequality says

P(X ≤ 30) = P(X ≤ µ− (37/
√

61) · σ) ≤ P(|X − µ| ≥ (37/
√

61) · σ) ≤ 61/372 ≈ 0.0445,

so the number of students who got 30 or below is at most 0.0445 · 50 = 2.2225, so at most 2.

4. You are collecting donations for a charity. Each donor gives you $10 with probability half
and $20 with probability half. Assuming donors are independent, estimate the probability
that you have collected at least $1200 after taking in 100 donations.

Solution: Let X be the total amount of money collected. We want to estimate P(X ≥ 1200).
X is the sum of 100 random variables with the same PMF so we can use the Central Limit
Theorem. We have

µ = E[X] = 100 · (10 · 1/2 + 20 · 1/2) = 1500

σ =
√

VarX =
√

100 · ((10− 15)2 · 1/2 + (20− 15)2 · 1/2) =
√

100 · 25 = 50.

Therefore,

P(X ≥ 1200) ≈ P(X ≥ µ− 6σ) ≈ P(N ≥ −6) ≈ 1− 9.86 · 10−10,

where N is a Normal(0, 1) random variable.

5. You randomly divide 48 boys and 48 girls into teams of equal size. Show that if you divide
them into 12 teams of 8 then there are no same-sex teams with probability at least 90%.

Solution: For 12 ≥ i ≥ 1, let Xi be the indicator variable that the i-th team consists of all
boys or all girls, then X =

∑12
i=1Xi. The Xi’s are not independent, so the Central Limit

Theorem doesn’t apply.

The probability that any given team is all-boys is

p =
48

96
· 47

95
· · · 41

89

using the formula for conditional probabilities (the first member is a boy, the second member
is a boy given the first one is etc.). As boys and girls are symmetric, the probability the team
is same-sex is 2p. By linearity of expectation,

E[X] = E[X1] + · · ·+ E[X12] = 12 · (2p) ≈ 0.068.

At this point we can proceed in two ways. We can use Markov’s inequality to conclude that
P(X ≥ 1) ≤ E[X]/1 ≈ 0.068, so the probability of having no same-sex teams is P(X = 0) ≈
1− 0.068 = 0.922. This meets the requirement and we are done.

Alternatively, we can calculate Var[X] and apply Chebyshev’s inequality, which could result
in a better bound. This is feasible but a bit difficult since X1, . . . , X12 are not independent
so we need their covariances.


