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Abstract

In this paper, we use a graphically explaination on how epipolar geometry can be used to solve the
visibility. This is paper is prepared mainly for teaching purpose.

1 Introduction

Traditional geometry-based computer graphics requires significant amount of time to render complex scenery
due to the dependency of the rendering time on the scene complexity. Even with the state-of-the-art graphics
accelerator, interactive rendering is still far from satisfactory. Image-based computer graphics provides an
alternative to render complex scene within a short period of time. Several image-based approaches have been
proposed during the last few years. In this paper, we focus on solving the visibility problem when warping a
given image (reference image) to generate an image (desired image) from a new viewpoint.

Given an image with depth, image as viewed from another viewpoint can be synthesized by reprojecting
each pixel. Since multiple pixels may be mapped to the same location in the new image, visibility has to be
resolved. The most straightforwardmethod is depth-buffering. However, in some cases, the depth information
may not be available or not accurate. This is especially common for real-world photographs. In that case,
only the correspondences or optical flow information are determined. We cannot resolve the visibility by
depth-buffering.

McMillan [5, 4] proposed a clever solution to the visibility problem. Once the mapping of pixels from
the reference image to the desired image is known (either by pixel reprojection [1] or by finding the point
correspondences [3] or optical flow [6]), the image can be warped correctly. No depth-buffering is needed.
The visibility is solved by mapping pixels in a specific order. McMillan’s original algorithm only works
for pixel-sized entities. Fu, Wong and Heng [2] generalized the drawing order from pixel-sized entities to
triangles.

2 Epipolar Geometry

In this paper, we describe some basics of epipolar geometry. Consider a planar perspective image Ic captured
with the center of projection at _c. We use the dot notation _a to denote a 3D point and the arrow notation ~a to
denote a 3D directional vector. A desired image Ie is generated with a new center of projection at _e. Figure 1
shows the geometry in both 3D and 2D.

Each pixel i in the image Ic stores the radiance along the ray ~L which is fired from _c passing through the
pixel window associated with i. Now, let’s choose an arbitrary pixel i1 from image Ic. A ray ~L1 is associated
with it. The intersection point _p1 associated with i1 must lie somewhere on the ray ~L1. To generate a new
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Figure 1: The geometry of two cameras (a) in 3D and (b) in 2D.

view from _e, _p1 has to be reprojected onto Ie. The plane constructed by _c, _e and _p1 is known as epipolar plane
in computer vision literature. The vector, ~!, originated from _c pointing towards _e is called positive epipolar
ray while the vector, �~!, originated from _c pointing to the opposite direction is called negative epipolar ray.

Now let’s choose another pixel i2 from image Ic. Occlusion happens only when _p1 and _p2 are reprojected
onto the same 2D location in Ie. If _p2 does not lie on the epipolar plane associated with _p1, then _p1 and _p2
will never occlude each other (see Figure 2). Hence occlusion happens only when _c, _e, _p1 and _p2 all lies on
the same plane. Moreover the necessary condition of _p2 occluding _p1 is _e, _p1 and _p2 are collinear and _p2 is
in between _p1 and _e, as illustrated in Figures 1 and 4.

Figure 2: Since _p2 does not lie on the epipolar plane associated with _p1, _p2 and _p1 will never occlude each
other.

From Figure 1, we know that _p2 will never be occluded by _p1 as viewed from _e no matter where the
exact positions of _p1 and _p2 are. Therefore, if we always draw _i1 before _i2 during reprojection, the visibility
problem is solved without knowing or comparing their depth values. And hence, if we can identify those
pixels whose intersection points may occlude each other and derive the drawing order, the visibility problem
can be solved without depth-buffering.

To identify the pixels which may occlude each other, we first intersect the epipolar plane with the planar
projection manifold (image Ic). The intersection line is called the epipolar line. Figure 3(a) illustrates the
terminologies graphically. When the positive epipolar ray ~! intersects with the projection manifold Ic, the
intersection point on the projection manifold is known as positive epipole. Figure 3 denotes it by a positive
sign. On the other hand, if the negative epipolar ray intersects with the projection manifold, the intersection
point is known as negative epipole and denoted by a negative sign. Note all epipolar lines pass through the
epipole (either positive or negative). When the epipolar rays parallel to the planar projection manifold, no
intersection point is found on the plane. All epipolar lines are in parallel.

All pixels in Ic that lie on the same epipolar line have a chance to occlude each other. Figure 4 shows
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two pixels, i1 and i2, lying on the same epipolar line. Their associated intersection points _p1 and _p2 are
coplanar and may occlude each other. And _p1 will never occlude _p2 as _p1’s angle of derivation �1 is greater
than, �2 of _p2. In other words, if i2 is closer to the positive epipole on the epipolar line than i1, i1 will never
occlude i2. Hence we should always draw i1 first. The arrow on the epipolar line in Figure 4 indicates the
drawing order of pixels. On the other hand, if i2 is closer to the negative epipole on the epipolar line than i1,
i2 will never occlude i1. By intersecting all of the epipolar planes with the image Ic (Figure 3(b)), we obtain
pictures of the drawing order (Figure 5). Note that once _c and _e are known, the picture of drawing order is
already determined. It is not necessary to define the epipolar planes explicitly. Hence no depth information
is required in constructing the drawing order.

(a) (b)

Figure 3: The epipolar line is the intersection of the projection manifold and the epipolar plane.

Figure 4: The drawing order between two pixels that lie on the same epipolar line.

Only three main categories of drawing order exist. If the positive epipolar ray intersects with the projec-
tion manifold, a converging pattern (Figure 5(a)) will be obtained. On the other hand, if the negative epipolar
ray intersects, a diverging pattern is resulted (Figure 5(b)). If the epipolar rays parallel to the projection man-
ifold, the epipoles can be regarded as located infinitely far away and the epipolar lines will be all in parallel
(Figure 5(c)).

McMillan derived two drawing orders of pixels from the patterns in Figure 5. They are shown in Figure 6.
Following these drawing orders, the visibility can be correctly resolved. No depth-buffering is required.
Pixels on different epipolar lines can be drawn in arbitrary order.
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Figure 5: The drawing patterns

(a) (b)

Figure 6: Two drawing orders derived from the patterns of epipolar lines.
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