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Notes 19 High-dimensional expander

1. Abstract simplicial complex

We want to apply the sampling algorithm based on random walk/Markov chain in the last lecture
to other settings (spanning trees, d-paths, d-cliques, etc). Let us generalize those constructions.
Definition 1.1 (Abstract simplicial complex). A set system Y = (U,F) is a ground set U together
with a family F of subsets over U . An abstract simplicial complex is downward closed set system:
If f ∈ F and g ⊆ f , then g ∈ F .

Abstract simplicial complex in combinatorics was originally proposed to describe the combina-
torial structure of a (non-abstract) simplicial complex in algebraic topology. We need not worry
about that motivation. Simply think of an abstract simplicial complex as a downward-closed set
system.
Definition 1.2 (Level). Level i of an abstract simplicial complex Y is the family of subsets of size
i in Y , and is denoted Y (i) = {f ∈ F | |f | = i}. The top level Y (d) of Y is the non-empty level
with the maximum d.

In the literature, f ∈ F of size i is also called a face of dimension i − 1. The collection of all
such faces is denoted X(i − 1) (same as our Y (i)). I do not follow the standard terminology of
“dimension”, since this off-by-one is more confusing than helpful.
Definition 1.3 (Pure). An abstract simplicial complex Y is pure if every face f ∈ Y (i) is contained
in some g ∈ Y (d) in its top level.
Definition 1.4 (Weight). Weight w : Y (d) → R+ assigns positive weights to the maximal faces of
a pure abstract simplicial complex Y . The weights induce a probability distribution πd on Y (d) by
πd(f) = w(f)/

∑
g∈Y (d)w(g).

Random walk on pure abstract simplicial complex Y

Let f0 be an arbitrary face in the top level Y (d)
For t = 0, 1, 2, . . .

Remove an element from ft uniformly at random to obtain gt ∈ Y (d− 1)
Among all ft+1 ⊃ gt, pick the new ft+1 ∈ Y (d) with probability proportional to w(ft+1)

This is a random walk/Markov chain on a weighted graph with vertex set Y (d), and two nodes
are adjacent if they share exactly d− 1 elements.

An abstract simplicial complex Y = (U,F) with top level Y (d) represents a hypergraph, whose
vertex set is U and whose set of hyperedges is Y (d). When the top level is Y (2), we get a graph
(and weight is the usual edge weight).

From now on simply call the combinatorial set system a simplicial complex (without “abstract”).

2. Inclusion graph

Definition 2.1 (Bipartite inclusion graph). For 0 ⩽ k ⩽ d, Γk has vertex set Y (k) ∪ Y (k − 1).
t ∈ Y (k) is adjacent to b ∈ Y (k − 1) if t ⊃ b.

For every fixed 0 ⩽ k ⩽ d, we again look at the random process:
(1) Pick a random t from Y (d), then randomly remove all but k elements from t .

Denote by πk(f) the probability of obtaining f ∈ Y (k).
The probability mass function πk satisfies

(2) πk(f) =
1

k + 1

∑
g∈Y (k+1),g⊃f

πk+1(g) .

Since the set system is pure, every face at a lower level also gets positive probability mass.
As before, we will also look at (d+ 1)-partite inclusion graph Γd ∪ · · · ∪ Γ0.
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3. Links

Recall Garland’s method decomposed P̃∧
k into

∑
b P̃

∧
b over b ∈ Y (k − 1), and P∨

k =
∑

b P
∨
b .

P̃∧
b corresponds to transitions in a weighted subgraph Hb = (Sb, Eb), where

Sb = {m ∈ Y (k) | m ⊃ b} Eb = {(m,m′) ∈ Sb × Sb | m ∪m′ ∈ Y (k + 1)} .

In the literature, Hb is known as the 1-skeleton of the link of b:
Definition 3.1 (Link). Given a simplicial complex Y = (U,F) and a face b ∈ F , the link of b is
Yb = (U,Fb), with faces

Fb = {f \ b | f ∈ F , f ⊇ b} .

Fb consists of faces g that can extend b to remain in F , so that g ∪ b ∈ F .
Every link Yb in a pure simplicial complex Y is also a pure simplicial complex.

Definition 3.2 (Skeleton). Given a simplicial complex Y = (U,F), its k-skeleton (U,Fk) consists
of faces in F of size at most k + 1.

Think of (U,F) as a hypergraph. 0- and 1-skeletons represent vertices and (non-hyper) edges.
Definition 3.3 (Link expander). A pure simplicial complex Y with weight w is an α-link expander
if λ2(P̃

∧
b ) ⩽ α for all b ∈ Y (k − 1) and 0 < k < d− 1.

In this convoluted language, the yet unproved lemma in last lecture becomes:
Lemma 3.4. If Y is the pure simplicial complex of a matroid of rank d with uniform weight w = 1
on Y (d), then Y is a 0-link expander.

4. Spectral inequalities for transition matrices

Consider a weighted undirected graph with adjacency matrix A. Recall that its degree matrix Π
is the diagonal matrix Π = Diag(π), whose vector π of diagonal entries encodes the vertex degrees:

π(v) = deg(v) =
∑
u

A(v, u) for every v .

In our application, A represents a distribution over edges, so that the sum of edge weights equal 1.
In this case, one can easily show that the vector π represents the probability mass function of the
following distribution:

(1) Pick an edge e ∈ E according to the edge distribution A
(2) Uniformly select one of the two endpoints of e at random

Also, the random walk transition matrix is P = Π+A, where Π+ represents the pseudo-inverse of
Π. We use pseudo-inverse, as opposed to the usual inverse, because there may be isolated vertices,
so that π(v) = 0. For v ∈ supp(π), P (v, v) is simply 1/π(v). For v /∈ supp(π), P (v, v) = 0.

Given two transition matrices P and Q with a common stationary distribution π and degree
matrix Π = Diag(π), recall that the spectral comparison ≼Π between P and Q is defined as

P ≼Π Q ⇐⇒ ΠP ≼ ΠQ .

Proposition 4.1. Suppose a transition matrix P has a stationary distribution π and the corre-
sponding degree matrix Π = Diag(π). Then for any γ ⩽ 1,

λ2(P ) ⩽ γ ⇐⇒ P ≼Π γI + (1− γ)1π⊤︸ ︷︷ ︸
Q

.

The expression Q here represents a linear interpolation of two extremes: I and 1π⊤. This linear
interpolation has two interpretations:

Independence/correlation interpretation:
• 1π⊤ is the transition matrix of a random walk that always picks the next vertex afresh from
π, regardless of the current vertex

• I is the transition matrix of random walk that always stays at the current vertex
Spectral interpretation:

• 1π⊤ has only one nonzero left-eigenvector π, associated with the eigenvalue 1
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• I not only has the same left-eigenvector π with eigenvalue 1, but also n − 1 other left-
eigenvectors associated with eigenvalue 1

Proof of Proposition 4.1. (⇐=): Q has top eigenvalue 1 (with left-eigenvector π) and all other
eigenvalues γ. That means λ2(Q) = γ (since γ ⩽ 1). We proved in the last lecture notes that

P ≼Π Q =⇒ λ2(P ) ⩽ λ2(Q) ,

so λ2(P ) ⩽ λ2(Q) = γ.
(=⇒): Consider the normalized adjacency matrix

(3) AP =
√
Π+A

√
Π+ =

√
ΠP

√
Π+ .

√
π is an eigenvector of AP with eigenvalue 1. Fix any set B eigenbasis of A associated with all the

non-zero eigenvalues, so that B contains
√
π. (Here and below, we call a set of (left-)eigenvectors

a (left-)eigenbasis if it spans the row space of the matrix, even without spanning the whole vector
space.)

Let AQ =
√
ΠQ

√
Π+ be the normalized adjacency matrix for Q. We claim that B is also an

eigenbasis for AQ. Indeed, Eq. (3) implies that B′ def
=

√
ΠB is a left-eigenbasis of P , with the same

eigenvalues, as we proved in the lecture on random walks. A vector in B′ is π. So B′ is a set of
common left-eigenvectors of P , 1π⊤, and hence Q. Therefore B =

√
Π+B′ is also an eigenbasis of

AQ, with the same associated eigenvalues as the corresponding left-eigenvectors of Q in B′.
Since λ2(P ) ⩽ γ = λ2(Q), for every y ∈ B,

y⊤AP y ⩽ y⊤AQy .

Indeed, the left hand side equals λk(AP )∥y∥2, and the right hand side equals λk(AQ)∥y∥2. Since
this inequality holds for every vector in a common eigenbasis of AP and AQ, it also holds for every
vector. That means AP ≼ AQ, which is equivalent to P ≼Π Q. □

5. Oppenheim’s theorem

Oppenheim found a way to translate eigenvalue bound on a higher layer links to that of a lower
layer.
Theorem 5.1 (Oppenheim). Let Y be a pure simplicial complex with weight w. Suppose λ2(P̃

∧
b ) ⩽ α

for every b ∈ Y (1). Also, suppose its 1-skeleton graph H = (Y (1), Y (2)) is connected. Then H is
an α

1− α
-expander. Equivalently, the random walk P on H satisfies λ2(P ) ⩽ α

1− α
.

Applying Oppenheim’s theorem inductively, we get:
Corollary 5.2. Let Y be a pure simplicial complex with weight w. Suppose every link Yb has
a connected 1-skeleton graph. Also, suppose the 1-skeleton graph of every b ∈ Y (d − 2) is an
α-expander. Then Y is an α

1− (d− 1)α
expander.

Before proving Oppenheim’s Theorem 5.1, we first sketch the reasons that the hypotheses of the
previous theorem holds for the matroid with uniform weight at the top level.

That every link Yb is connected is due to the exchangable property of matroid (details omitted).
Given any b ∈ Y (n− 3), the 1-skeleton Hb = (Sb, Eb) of Yb has adjacency matrix

Ab(f, f
′) =

{
1 if b ∪ f ∪ f ′ is a spanning tree
0 otherwisew

.

Edges in b induces three connected components in G. Adding two more edges to these components
yields a spanning tree, provided the two edges added are connecting different pairs of components.
This partitions the 0-skeleton Sb of Yb into three sets E1, E2, E3.

The adjacency matrix Ab is of the form

Ab =

E1 E2 E2( )
E1 O 1 1
E2 1 O 1
E3 1 1 O

= J − 1E11
⊤
E1

− 1E21
⊤
E2

− 1E31
⊤
E3

.
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Here J denotes the all-one matrix of appropriate dimension.
The all-one matrix J on Sb has rank 1 and nonpositive second eigenvalue, so after subtracting

three positive semidefinite matrices 1Ei1
⊤
Ei

from J , Ab also has nonpositive second eigenvalue by
Courant–Fishcer.

Therefore the normalized adjacency matrix of Yb also has nonpositive second eigenvalue.

Proof of Theorem 5.1. Suppose someone picks T ∈ Y (d) according to πd and reveals its elements
T = {e1, . . . , ed} one by one to you (by picking a uniformly random ordering).

Scenario 1: Consider the first two elements revealed. Then the probability of (e1, e2) = (f, g) is
exactly the (f, g)-entry of the matrix

Π1P ,

where Π1 = Diag(π1) and P is the transition matrix for random walk on the 1-skeleton graph of Y :

P (f, g) =
P[g ∈ T ]

P[f ∈ T ]
.

Scenario 2: This time consider the first three elements revealed. Then the probability of (e2, e3) =
(f, g) is exactly the (f, g)-entry of the matrix

E
a∼π1

ΠaP̃
∧
a ,

where Πa = Diag(πa) (πa is the conditional distribution of f conditioned on a) and P̃∧
a is the

transition matrix for random walk on the the 1-skeleton graph of the link Ya:

P̃∧
a (f, g) =

P[g ∈ T | a ∈ T, f ∈ T ]

P[f ∈ T | a ∈ T ]
.

In fact, the ordered tuple (f, g) revealed in both scenarios above have the same marginal proba-
bilities. We have thus proved
(4) Π1P = E

a∼π1

ΠaP̃
∧
a .

Note that ΠaP
∨
a = πaπ

⊤
a is a rank-1 matrix, and the assumption that λ2(P̃

∧
a ) ⩽ α is equivalent

(by Proposition 4.1) to
ΠaP̃

∧
a ≼ Πa(αI + (1− α)P∨

a ) .

Plugging the last inequality into Eq. (4), we get

(5)

Π1P ≼ E
a∼π1

Πa(αI + (1− α)P∨
a )

= αΠ1︸︷︷︸
(∗)

+(1− α)Π1P
2︸ ︷︷ ︸

(∗∗)

,

where the last equality will be explained next. The first term (∗) is due to

E
a∼π1

Πa = Π1 ,

which is true because the second element revealed (e2) has the same marginal distribution as the
first (e1). The second term (∗∗) is due to
(6) E

a∼π1

ΠaP
∨
a = Π1P

2 ,

which holds because the (f, g)-entry of the matrix on the left equals the probability of:
Sample a ∼ π1, then independently sample f ∼ πa and g ∼ πa ,

and the (f, g)-entry of the matrix on the right equals the probability of:
Sample f ∼ π1, then a ∼ P (f, ·), then g ∼ P (a, ·) .

It is possible to show that P has only non-negative eigenvalues (it is a non-lazy up-walk and is
the product of two self-adjoint operators), and λ2(P

2) = λ2(P )2, so Eq. (5) implies (via essentially
the same proof as the first part of Proposition 4.1)

λ2 ⩽ α+ (1− α)λ2
2 ⇐⇒ λ2 − λ2

2 ⩽ α(1− λ2
2) ,
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where λ2 = λ2(P ). The assumption that the empty link is connected means λ2 < 1. Divide both
sides by 1− λ2 to get

λ2 ⩽ α(1 + λ2) =⇒ λ2 ⩽
α

1− α
. □
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