1. Graph sparsification

Problem 1.1. Given an undirected, connected graph $G = (V, E_G, w_G)$ with positive edge weights $w_G : E_G \to \mathbb{R}_+$, find a sparse subgraph $H = (V, E_H, w_H)$ (with possibly different weights w_H) that approximates *G*, so that they have similar cut value across every cut.

In fact, we will solve this problem with a stronger guarantee: H will spectrally approximate G , not just have similar cut values.

Definition 1.2. Suppose *G* and *H* are graphs on the same set of vertices. *H ε*-approximates *G* if

$$
(1) \qquad (1 - \varepsilon)L_G \preccurlyeq L_H \preccurlyeq (1 + \varepsilon)L_G .
$$

If *G* is the complete graph on *n* vertices with self-loops, then graphs *H* that approximates *G* are exactly expanders in Notes14.

If *H* approximates *G* in this spectral sense, then *H* and *G* must have similar values across every cut. Recall that quadratic forms of the Laplacian are closely related to cuts. For any subset $S \subseteq V$, the total weight of edges across the cut is given by

$$
w_G(S, \overline{S}) = \mathbb{1}_S^\top L_G \mathbb{1}_S.
$$

Therefore, if *H* ε -approximates *G*, then simultaneously for any $S \subseteq V$,

$$
(1 - \varepsilon) \mathbb{1}_S^\top L_G \mathbb{1}_S \leqslant \mathbb{1}_S^\top L_H \mathbb{1}_S \leqslant (1 + \varepsilon) \mathbb{1}_S^\top L_G \mathbb{1}_S,
$$

that is,

$$
(1 - \varepsilon)w_G(S, \overline{S}) \leq w_H(S, \overline{S}) \leq (1 + \varepsilon)w_G(S, \overline{S}).
$$

Our sparse graph *H* will contain only edges from *G*, so $E_H \subseteq E_G$. But these edges can have new edge weights w_H suitably rescaled from the original weights w_G .

2. Isotropic position

Suppose *H* ε -approximates *G*, so their Laplacians are close as in Eq. (1). If we "divide Eq. (1) by L_G ", or rather, left and right multiply every term by $L_G^{+/2}$ $G^{+/2}$, we get

(2)
$$
(1 - \varepsilon)\Pi \preccurlyeq L_G^{+/2} L_H L_G^{+/2} \preccurlyeq (1 + \varepsilon)\Pi ,
$$

where $\Pi = L_G^{+/2} L_G L_G^{+/2}$ G ^{+/2} is the orthogonal projection to the span of *L_G*[. Th](#page-0-0)e normalized co[ndition](#page-0-0) Eq. (2) is equivalent to the original one Eq. (1) since L_H and L_G share the same nullspace (spanned by **1**).

Under this normalization, L_G can be seen as the second moment matrix of some vectors in [isotropi](#page-0-1)c position.

Definition 2.1. A set of vectors $\{u_e\}_{e \in E}$ [in a](#page-0-0) vector space *U* are in isotropic position if its second moment matrix is the identity matrix in *U*:

$$
\sum_{e\in E} u_e u_e^\top = I \; .
$$

This condition means the second moment is the same in every direction:

$$
x^{\top} \left(\sum_{e \in E} u_e u_e^{\top} \right) x = x^{\top} x = ||x||^2 \quad \text{for every } x \in U \text{, independent of the direction of } x.
$$

If $\{u_e\}_{e \in E}$ represents high dimensional data with mean 0, then a set of data in isotropic position has covariance being the identity matrix, so the projected covariance in every direction is the same.

How does

$$
L_G = \sum_{(a,b)\in E} w_e (\mathbb{1}_a - \mathbb{1}_b) (\mathbb{1}_a - \mathbb{1}_b)^\top
$$

represent vectors in isotropic position? If we set $v_e = \sqrt{w_e}(\mathbb{1}_a - \mathbb{1}_b)$ for edge $e = (a, b)$, and $u_e = L_G^{+/2}$ $G^{\dagger/2}v_e$, then

$$
\sum_{e \in E} u_e u_e^{\top} = L_G^{+/2} \left(\sum_{e \in E} v_e v_e^{\top} \right) L_G^{+/2} = L_G^{+/2} L_G L_G^{+/2} = \Pi ,
$$

which is essentially the identity operator on the subspace *U* orthogonal to **1**. Π also zeros out vector parallel to **1**. If we regard u_e as vectors in *U* (an $(n-1)$ -dimensional vector space), not just vectors in \mathbb{R}^V (an *n*-dimensional vector space containing *U*), then ${u_e}_{e \in E}$ are in isotropic position.

The original problem of finding sparse subgraph *H* to approximate *G* now reduces to the following problem:

Problem 2.2 (Isotropic sampling). Given a set vectors $\{u_e\}_{e \in E}$ in isotropic position, obtain a new collection ${\tilde{u}_{e'}}_{e'}e_{E'}$ of vectors, so that every new vector $u_{e'}$ is a rescaled vector u_e in the original collection:

for every $e' \in E'$, there is $\alpha_{e'} > 0, e \in E$, such that $\tilde{u}_{e'} = \alpha_{e'} u_e$.

We want $|E'|$ to be as small as possible, and

$$
(1-\varepsilon)I \preccurlyeq \sum_{e \in E'} \tilde{u}_e \tilde{u}_e^\top \preccurlyeq (1+\varepsilon)I \;,
$$

i.e. the new collection ${\tilde{u}_e}_{e \in E'}$ is ε -close to be in isotropic position.

3. Sampling by squared norm

Here is an algorithm for the isotropic sampling problem given vectors $\{u_e\}_{e \in E}$ in a *d*-dimensional vector space *U*.

Sampling by squared norm

Let $Z = \sum_{e \in E} ||u_e||^2$ and $T = 4(d \log d)/\varepsilon^2$ For $e' = 1, ..., T$ Choose $e \in E$ with probability $p_e = ||u_e||^2/Z$ Add $\tilde{u}_{e'} = u_e / \sqrt{Tp_e}$ to the output collection

In other words, we sample $u_{e'}$ independently with repetition as some vector u_e scaled. Any u_e is chosen with probability proportional to its squared norm *∥ue∥* 2 . If *u^e* is chosen, we scale it down by the factor $\sqrt{Tp_e}$.

Why scale factor $1/\sqrt{Tp_e}$? So that the second moment matrix of $\{\tilde{u}_{e'}\}_{e' \in E}$ has the correct expectation. Note that since $\tilde{u}_{e'}$ are random, their second moment matrix $\sum_{e' \in E'} \tilde{u}_{e'} \tilde{u}_{e'}^\top$ is a random matrix. We will study the expectation of this random matrix, and its deviation from expectation. For any fixed e' , when sampling the e' -th vector $\tilde{u}_{e'}$,

$$
\mathop{\mathbb{E}}_{\tilde{u}_{e'}}\left[\tilde{u}_{e'}\tilde{u}_{e'}^\top\right] = \sum_{e \in E} p_e \left(\frac{u_e}{\sqrt{Tp_e}}\right) \left(\frac{u_e}{\sqrt{Tp_e}}\right)^\top = \frac{1}{T} \sum_{e \in E} u_e u_e^\top = \frac{I}{T},
$$

and the second moment matrix of all *T* vectors has expectation

$$
\mathop{\mathbb{E}}_{\{\tilde{u}_{e'}\}}\left[\sum_{e' \in E'} \tilde{u}_{e'} \tilde{u}_{e'}^\top\right] = T \mathop{\mathbb{E}}_{\tilde{u}_{e'}}\left[\tilde{u}_{e'} \tilde{u}_{e'}^\top\right] = T \frac{I}{T} = I.
$$

4. Matrix Chernoff bounds

We will need to show that a sum of independent random second moment matrices is close to its expectation with high probability. This was proved by Tropp in *"User-Friendly Tail Bounds for Sums of Random Matrices"* (Corollary 5.2 there).

Theorem 4.1 (Tropp). Let X_1, \ldots, X_m be independent random *d*-dimensional symmetric positive *semidefinite matrices so that* $||X_i|| \le R$ *almost surely. Let* $X = \sum_{1 \le i \le m} X_i$ *and* μ_{\min} *and* μ_{\max} *be the smallest and largest eigenvalues of*

$$
\mathbb{E}[X] = \sum_{1 \leq i \leq m} \mathbb{E}[X_i].
$$

Then

$$
\mathbb{P}\left[\lambda_{\min}\left(X\right) \leqslant (1-\varepsilon)\mu_{\min}\right] \leqslant d\exp(-\varepsilon^2\mu_{\min}/2R) \quad \text{for } 0 < \varepsilon < 1 ,
$$

$$
\mathbb{P}\left[\lambda_{\max}\left(X\right) \geqslant (1+\varepsilon)\mu_{\max}\right] \leqslant d\exp(-\varepsilon^2\mu_{\max}/3R) \quad \text{for } 0 < \varepsilon < 1 .
$$

5. Concentration

We will apply Matrix Chernoff with $X_{e'} = \tilde{u}_{e'} \tilde{u}_{e'}^{\top}$.

We choose $e \in E$ with probability proportional to $||u_e||^2$ in order to minimize the norm of $X_{e'}$:

$$
\|X_{e'}\| \leqslant \max_{e \in E} \left\| \left(\frac{u_e}{\sqrt{Tp_e}}\right) \left(\frac{u_e}{\sqrt{Tp_e}}\right)^\top \right\| = \max_{e \in E} \left\| \frac{u_e}{\sqrt{Tp_e}} \right\|^2 = \max_{e \in E} \frac{\|u_e\|^2}{Tp_e} = \frac{Z}{T}.
$$

The point is that, in the last equality, every term inside the maximum is *Z*/*T*, independent of $e \in E$. This ensures the best possible bound $R = Z/T$ for the norm of $X_{e'}$. That's why sampling probabilities p_e are proportional to $||u_e||^2$.

In fact, the normalization constant *Z* is simply $d = \dim U$. Indeed,

$$
Z = \sum_{e \in E} u_e^{\top} u_e = \sum_{e \in E} \operatorname{Tr} \left(u_e u_e^{\top} \right) = \operatorname{Tr} \left(\sum_{e \in E} u_e u_e^{\top} \right) = \operatorname{Tr}(I) = \dim U.
$$

By Matrix Chernoff with $X = \sum_{e' \in E'} X_{e'} = \sum_{e' \in E'} \tilde{u}_{e'} \tilde{u}_{e'}^{\top}$

$$
\mathbb{P}[X \succcurlyeq (1+\varepsilon)I] \leq d \exp(-\varepsilon^2/3R) = d \exp(-(4/3)\log d) = d^{-1/3}.
$$

$$
\mathbb{P}[X \preccurlyeq (1-\varepsilon)I] \leq d \exp(-\varepsilon^2/2R) = d \exp(-(4/2)\log d) = d^{-1}.
$$

Therefore, with overwhelming probability for large *d*, the second moment matrix is *ε*-close to the identity, so the output vectors ${\tilde{u}_{e'}}_{e' \in E'}$ are ε -close to be in isotropic position. This completes the analysis of the sampling algorithm.

6. Variants

The above sampling algorithm outputs a collection with $O(d(\log d)/\varepsilon^2)$ vectors. The $\Omega(d \log d)$ dependence on *d* is unavoidable for randomized algorithms with independent samples: A special case is the input $\{u_e\}_{e \in E}$ consists of standard basis vectors. In this case Coupon collector tells us $\Omega(d \log d)$ samples are required to see all vectors.

Batson–Spielman–Srivastava came up with a deterministic algorithm (without random sampling) to solve the isotropic sampling problem that outputs a collection with $O(d/\varepsilon^2)$ vectors.

7. Effective resistance

Back to our original question of graph sparsification. The resulting algorithm (proposed by Spielman–Srivastava) gives us a subgraph *H* with $O(n(\log n)/\varepsilon^2)$ edges that ε -approximate given any graph *G*. *H* is very sparse even when *G* is dense.

What is the sampling probability p_e for edge $e = (a, b)$? It is proportional to $||u_e||^2$, where $u_e = L^{+/2} \sqrt{w_e} (\mathbb{1}_a - \mathbb{1}_b)$. Therefore

$$
||u_{(a,b)}||^2 = w_{a,b}||L^{+/2}(\mathbb{1}_a - \mathbb{1}_b)||^2 = w_{a,b}R_{\text{eff}}(a,b).
$$

If input graph *G* is unweighted, then we are sampling an edge with probability proportional to the effective resistance between its endpoints.

We previously showed that $Z = \sum_{e \in E} ||u_e||^2 = \dim U$. In the context of graphs,

$$
\sum_{(a,b)\in E} w_{a,b} R_{\text{eff}}(a,b) = n-1.
$$

This result has a combinatorial meaning: One can consider sampling a random spanning tree of *G*, with probability proportional to the product of edge weights in the tree. Turns out $w_{a,b}R_{\text{eff}}(a,b)$ is exactly the probability that an edge (a, b) appears in this random spanning tree. And above calculations say that the expected number of edges in the random spanning tree is $n-1$.