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Notes 17: Graph sparsification

1. Graph sparsification

Problem 1.1. Given an undirected, connected graph G = (V,EG, wG) with positive edge weights
wG : EG → R+, find a sparse subgraph H = (V,EH , wH) (with possibly different weights wH) that
approximates G, so that they have similar cut value across every cut.

In fact, we will solve this problem with a stronger guarantee: H will spectrally approximate G,
not just have similar cut values.

Definition 1.2. Suppose G and H are graphs on the same set of vertices. H ε-approximates G if
(1) (1− ε)LG ≼ LH ≼ (1 + ε)LG .

If G is the complete graph on n vertices with self-loops, then graphs H that approximates G are
exactly expanders in Notes14.

If H approximates G in this spectral sense, then H and G must have similar values across every
cut. Recall that quadratic forms of the Laplacian are closely related to cuts. For any subset S ⊆ V ,
the total weight of edges across the cut is given by

wG(S, S) = 1S
⊤LG1S .

Therefore, if H ε-approximates G, then simultaneously for any S ⊆ V ,
(1− ε)1S

⊤LG1S ⩽ 1S
⊤LH1S ⩽ (1 + ε)1S

⊤LG1S ,

that is,
(1− ε)wG(S, S) ⩽ wH(S, S) ⩽ (1 + ε)wG(S, S) .

Our sparse graph H will contain only edges from G, so EH ⊆ EG. But these edges can have new
edge weights wH suitably rescaled from the original weights wG.

2. Isotropic position

Suppose H ε-approximates G, so their Laplacians are close as in Eq. (1). If we “divide Eq. (1)
by LG”, or rather, left and right multiply every term by L

+/2
G , we get

(2) (1− ε)Π ≼ L
+/2
G LHL

+/2
G ≼ (1 + ε)Π ,

where Π = L
+/2
G LGL

+/2
G is the orthogonal projection to the span of LG. The normalized condition

Eq. (2) is equivalent to the original one Eq. (1) since LH and LG share the same nullspace (spanned
by 1).

Under this normalization, LG can be seen as the second moment matrix of some vectors in
isotropic position.

Definition 2.1. A set of vectors {ue}e∈E in a vector space U are in isotropic position if its second
moment matrix is the identity matrix in U :∑

e∈E
ueu

⊤
e = I .

This condition means the second moment is the same in every direction:

x⊤

(∑
e∈E

ueu
⊤
e

)
x = x⊤x = ∥x∥2 for every x ∈ U , independent of the direction of x.

If {ue}e∈E represents high dimensional data with mean 0, then a set of data in isotropic position
has covariance being the identity matrix, so the projected covariance in every direction is the same.

How does
LG =

∑
(a,b)∈E

we(1a − 1b)(1a − 1b)
⊤

1



2

represent vectors in isotropic position? If we set ve =
√
we(1a − 1b) for edge e = (a, b), and

ue = L
+/2
G ve, then ∑

e∈E
ueu

⊤
e = L

+/2
G

(∑
e∈E

vev
⊤
e

)
L
+/2
G = L

+/2
G LGL

+/2
G = Π ,

which is essentially the identity operator on the subspace U orthogonal to 1. Π also zeros out vector
parallel to 1. If we regard ue as vectors in U (an (n− 1)-dimensional vector space), not just vectors
in RV (an n-dimensional vector space containing U), then {ue}e∈E are in isotropic position.

The original problem of finding sparse subgraph H to approximate G now reduces to the following
problem:
Problem 2.2 (Isotropic sampling). Given a set vectors {ue}e∈E in isotropic position, obtain a new
collection {ũe′}e′∈E′ of vectors, so that every new vector ue′ is a rescaled vector ue in the original
collection:

for every e′ ∈ E′, there is αe′ > 0, e ∈ E, such that ũe′ = αe′ue .

We want |E′| to be as small as possible, and

(1− ε)I ≼
∑
e∈E′

ũeũ
⊤
e ≼ (1 + ε)I ,

i.e. the new collection {ũe}e∈E′ is ε-close to be in isotropic position.

3. Sampling by squared norm

Here is an algorithm for the isotropic sampling problem given vectors {ue}e∈E in a d-dimensional
vector space U .
Sampling by squared norm

Let Z =
∑

e∈E∥ue∥2 and T = 4(d log d)/ε2
For e′ = 1, . . . , T

Choose e ∈ E with probability pe = ∥ue∥2/Z
Add ũe′ = ue/

√
Tpe to the output collection

In other words, we sample ue′ independently with repetition as some vector ue scaled. Any ue is
chosen with probability proportional to its squared norm ∥ue∥2. If ue is chosen, we scale it down
by the factor

√
Tpe.

Why scale factor 1/
√
Tpe? So that the second moment matrix of {ũe′}e′∈E has the correct

expectation. Note that since ũe′ are random, their second moment matrix
∑

e′∈E′ ũe′ ũ
⊤
e′ is a random

matrix. We will study the expectation of this random matrix, and its deviation from expectation.
For any fixed e′, when sampling the e′-th vector ũe′ ,

Ẽ
ue′

[
ũe′ ũ

⊤
e′

]
=
∑
e∈E

pe

(
ue√
Tpe

)(
ue√
Tpe

)⊤
=

1

T

∑
e∈E

ueu
⊤
e =

I

T
,

and the second moment matrix of all T vectors has expectation

E
{ũe′}

[∑
e′∈E′

ũe′ ũ
⊤
e′

]
= T Ẽ

ue′

[
ũe′ ũ

⊤
e′

]
= T

I

T
= I .

4. Matrix Chernoff bounds

We will need to show that a sum of independent random second moment matrices is close to its
expectation with high probability. This was proved by Tropp in “User-Friendly Tail Bounds for
Sums of Random Matrices” (Corollary 5.2 there).
Theorem 4.1 (Tropp). Let X1, . . . , Xm be independent random d-dimensional symmetric positive
semidefinite matrices so that ∥Xi∥ ⩽ R almost surely. Let X =

∑
1⩽i⩽mXi and µmin and µmax be

the smallest and largest eigenvalues of

E[X] =
∑

1⩽i⩽m

E[Xi] .
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Then
P [λmin (X) ⩽ (1− ε)µmin] ⩽ d exp(−ε2µmin/2R) for 0 < ε < 1 ,

P [λmax (X) ⩾ (1 + ε)µmax] ⩽ d exp(−ε2µmax/3R) for 0 < ε < 1 .

5. Concentration

We will apply Matrix Chernoff with Xe′ = ũe′ ũ
⊤
e′ .

We choose e ∈ E with probability proportional to ∥ue∥2 in order to minimize the norm of Xe′ :

∥Xe′∥ ⩽ max
e∈E

∥∥∥∥∥
(

ue√
Tpe

)(
ue√
Tpe

)⊤
∥∥∥∥∥ = max

e∈E

∥∥∥∥ ue√
Tpe

∥∥∥∥2 = max
e∈E

∥ue∥2

Tpe
=

Z

T
.

The point is that, in the last equality, every term inside the maximum is Z/T , independent of
e ∈ E. This ensures the best possible bound R = Z/T for the norm of Xe′ . That’s why sampling
probabilities pe are proportional to ∥ue∥2.

In fact, the normalization constant Z is simply d = dimU . Indeed,

Z =
∑
e∈E

u⊤e ue =
∑
e∈E

Tr
(
ueu

⊤
e

)
= Tr

(∑
e∈E

ueu
⊤
e

)
= Tr(I) = dimU .

By Matrix Chernoff with X =
∑

e′∈E′ Xe′ =
∑

e′∈E′ ũe′ ũ
⊤
e′ ,

P[X ≽ (1 + ε)I] ⩽ d exp(−ε2/3R) = d exp(−(4/3) log d) = d−1/3 .

P[X ≼ (1− ε)I] ⩽ d exp(−ε2/2R) = d exp(−(4/2) log d) = d−1 .

Therefore, with overwhelming probability for large d, the second moment matrix is ε-close to the
identity, so the output vectors {ũe′}e′∈E′ are ε-close to be in isotropic position. This completes the
analysis of the sampling algorithm.

6. Variants

The above sampling algorithm outputs a collection with O(d(log d)/ε2) vectors. The Ω(d log d)
dependence on d is unavoidable for randomized algorithms with independent samples: A special
case is the input {ue}e∈E consists of standard basis vectors. In this case Coupon collector tells us
Ω(d log d) samples are required to see all vectors.

Batson–Spielman–Srivastava came up with a deterministic algorithm (without random sampling)
to solve the isotropic sampling problem that outputs a collection with O(d/ε2) vectors.

7. Effective resistance

Back to our original question of graph sparsification. The resulting algorithm (proposed by
Spielman–Srivastava) gives us a subgraph H with O(n(logn)/ε2) edges that ε-approximate given
any graph G. H is very sparse even when G is dense.

What is the sampling probability pe for edge e = (a, b)? It is proportional to ∥ue∥2, where
ue = L+/2√we(1a − 1b). Therefore

∥u(a,b)∥2 = wa,b∥L+/2(1a − 1b)∥2 = wa,bReff(a, b) .

If input graph G is unweighted, then we are sampling an edge with probability proportional to the
effective resistance between its endpoints.

We previously showed that Z =
∑

e∈E∥ue∥2 = dimU . In the context of graphs,∑
(a,b)∈E

wa,bReff(a, b) = n− 1 .

This result has a combinatorial meaning: One can consider sampling a random spanning tree of G,
with probability proportional to the product of edge weights in the tree. Turns out wa,bReff(a, b)
is exactly the probability that an edge (a, b) appears in this random spanning tree. And above
calculations say that the expected number of edges in the random spanning tree is n− 1.
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