Notes 10: Conductance, Expansion, Normalized Laplacians

1. Conductance and expansion

Last lecture we saw that a graph is connected if and only if the second smallest eigenvalue λ_2 of its Laplacian L_G is strictly larger than the smallest eigenvalue λ_1 (which is zero). Today we will show a robust version of this result: a graph is "well-connected" if and only if λ_2 is much bigger than λ_1 .

One way to measure how well a graph $G = (V, E)$ is connected is expansion.

Definition 1.1. Given a graph *G* with positive edge weights $w \in \mathbb{R}^E_+$, the degree of vertex *i* is $d(i) := \sum_{j:(i,j)\in E} w_{ij}$ and the total degree of a vertex subset $S \subseteq V$ is $d(S) := \sum_{i\in S} d(i)$.

The conductance of a vertex subset $S \subseteq V$ is

$$
\varphi(S) = w(S, \overline{S})/d(S) ,
$$

where $w(S,\overline{S}) = \sum_{i \in S, j \notin S, (i,j) \in E} w_{ij}$ is the total edge weight across the cut from *S* to \overline{S} . The expansion of a graph is

$$
\varphi(G) = \min_{\substack{S \subseteq V, \ S \neq \emptyset \\ d(S) \le d(V)/2}} \varphi(S) \ .
$$

The condition $d(S) \le d(V)/2$ in expansion is equivalent to $d(S) \le d(\overline{S})$.

The total degree of a subset *S* measures the size of a subset, weighted according to degrees. If the graph is regular (all vertices have the same degree), then $\deg(S)$ is proportional to *S* \mid .

The conductance of a subset or the expansion a graph is always between 0 and 1. A graph is disconnected if and only if $\varphi(G) = 0$.

1.1. **Complete graph.** What is the expansion of the complete graph, the most well-connected graph? Given a subset $S \subseteq V$ of size k , its conductance is $\frac{k(n-k)}{k(n-1)} = \frac{n-k}{n-1}$ $\frac{n}{n-1}$. So for any subset of size at most $n/2$, its conductance is at least $\frac{n}{2}$ $\frac{2(n-1)}{2(n-1)}$ 1 $\frac{1}{2}$. Complete graph therefore has expansion roughly 1/2.

1.2. **Barbell graph.** The barbell graph on 2*n* vertices consists of two disjoint complete subgraphs, each of size *n*, that are joined by a single edge. This graph is connected (every vertex has a path to any other vertex), but intuitively not well-connected, since removing the extra edge disconnects the two complete subgraphs.

What is the expansion of this graph? Consider *S* to be the vertex set of one of the complete subgraphs. Then *S* has conductance $\frac{1}{1 + n(n-1)} = O$ (1) *n*2 \setminus . Hence the expansion of the barbell graph is also $O(1/n^2)$.

2. Noramlized Laplacians

We are going to compare graph expansion to Laplacian eigenvalues. We will assume the graph has no isolated vertices (of degree 0).

Recall that $L_G = \sum_{(i,j)\in E} w_{ij} (\mathbb{1}_i - \mathbb{1}_j)(\mathbb{1}_i - \mathbb{1}_j)^{\top} = D - A$, where D is the diagonal matrix with $D_{ii} = d(i)$ and *A* is the adjacency matrix. (We will drop subscript *G* and write $L = L_G$.)

All eigenvalues of *L* lie in the range $[0, 2\Delta]$, where $\Delta = \max_{i \in V} d(i)$ is the maximum degree:

Proposition 2.1. $-D \leq A \leq D$ *and* $0 \leq L \leq 2D$ *. In particular, eigenvalues of A are between* $-\Delta$ *and* Δ *, and those of L are between* 0 *and* 2Δ *.*

Proof.
$$
D - A = \sum_{(i,j) \in E} w_{ij} (\mathbb{1}_i - \mathbb{1}_j) (\mathbb{1}_i - \mathbb{1}_j)^\top \succcurlyeq 0.
$$

\nSimilarly $D + A = \sum_{(i,j) \in E} w_{ij} (\mathbb{1}_i + \mathbb{1}_j) (\mathbb{1}_i + \mathbb{1}_j)^\top \succcurlyeq 0.$
\nInequalities for *L* follow from those of $A = D - L$.

We want to remove the dependence on degree and normalize the Laplacian, so that its eigenvalues are between [0, 2]. To this end, we "divide" L by the positive definite matrix D — or rather, multiply by $D^{-1/2}$ on both left and right, so that the resulting matrix is still symmetric.

Definition 2.2. The normalized adjacency matrix is $\mathcal{A} = D^{-1/2}AD^{-1/2}$. The normalized Laplacian is $\mathcal{L} = D^{-1/2}LD^{-1/2} = D^{-1/2}(D - A)D^{-1/2} = I - A$.

Claim 2.3. *If n-by-n real symmetric matrix X is positive semidefinite, then so is* $Y^T XY$ *for any n-by-m real matrix Y . (simple proof omitted)*

Proposition 2.4. *Eigenvalues of A are between −*1 *and* 1*. Eigenvalues of L are between* 0 *and* 2*.*

Proof. The above proposition showed that $D - A \ge 0$. Therefore $I - A = D^{-1/2}(D - A)D^{-1/2} \ge 0$ by the above claim (with $X = D - A$, $Y = D^{-1/2}$). Equivalently, all eigenvalues of *A* are at most 1. Similarly $D+A \geq 0$. Therefore $I+\mathcal{A} = D^{-1/2}(\overline{D}+\overline{A})D^{-1/2} \geq 0$ by the above claim. Equivalently,

all eigenvalues of *A* are at least *−*1.

Eigenvalue bounds for $\mathcal L$ follows from eigenvalue bounds for $\mathcal A = I - \mathcal L$. □

In fact 0 is always an eigenvalue of \mathcal{L} , with eigenvector $v_1 = D^{1/2} \mathbb{1}$, because

 $\mathcal{L}v_1 = D^{-1/2}LD^{-1/2}D^{1/2}\mathbb{1} = D^{-1/2}L\mathbb{1} = 0.$

One can show that *L* and $\mathcal L$ have the same zero eigenspace, via the invertible map $D^{-1/2}$.

3. Cheeger–Alon–Milman inequality

Let $0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \leq 2$ be the eigenvalues of the normalized Laplacian matrix $\mathcal L$ of a graph *G*.

In the previous lecture, we showed that $\lambda_2 = 0$ (= λ_1) if and only if the graph is disconnected.

We now quantify well-connectedness of a graph via λ_2 (the gap between the two smallest eigenvalues).

Theorem 3.1 (Cheeger–Alon–Milman)**.**

$$
\frac{\lambda_2}{2} \leqslant \varphi(G) \leqslant \sqrt{2\lambda_2} \ .
$$

We first prove the easy direction (left inequality).

By Courant–Fischer, taking $v_1 = D^{1/2} \mathbb{1}$ to be an eigenvector of \mathcal{L} with eigenvalue 0,

$$
\lambda_2 = \min_{x \perp v_1} \frac{x^\top \mathcal{L} x}{x^\top x} = \min_{x \perp v_1} \frac{x^\top D^{-1/2} L D^{-1/2} x}{x^\top x} = \min_{D^{1/2} y \perp v_1} \frac{y^\top L y}{y^\top D y} ,
$$

where $y = D^{-1/2}x$.

For every vertex subset *S*, we will construct a vector *y* satisfying the orthogonality constraint whose Rayleigh quotient is controlled by the conductance of *S*:

Lemma 3.2. *Every nonempty subset* $S \subseteq V$ *corresponds to a vector y such that* $D^{1/2}y \perp v_1$ *and*

$$
\frac{y^{\top}Ly}{y^{\top}Dy} = \varphi(S)\frac{d(V)}{d(\overline{S})} .
$$

If $d(S) \le d(V)/2$ (equivalently $d(\overline{S}) \ge d(V)/2$), then the quotient $\frac{y^{\dagger}Ly}{\sqrt{L}D}$ $\frac{y - By}{y[⊤] Dy}$ ≤ 2 $\varphi(S)$. Every nonempty subset $S \subseteq V$ with at most half of the total degree therefore gives us an upperbound $\lambda_2 \leq 2\varphi(S)$. Minimizing over all such *S* yields $\lambda_2 \leq 2\varphi(G)$.

It remains to prove the lemma.

The condition $D^{1/2}y \perp v_1$ means $0 = (D^{1/2}y)^{\top}D^{1/2}1 = y^{\top}D1 = \sum_{i \in V} d(i)y_i$. Also, the denominator in the quotient is $y^{\top}Dy = \sum_{i \in V} d(i)y_i^2$. In summary, $\sqrt{2}$

$$
\lambda_2 = \min_{\sum_{i \in V} d(i)y_i = 0} \frac{\sum_{(i,j) \in E} w_{ij} (y_i - y_j)^2}{\sum_{i \in V} d(i) y_i^2}.
$$

How to construct *y* from *S*? A natural choice is $y = \mathbb{1}_S$, the indicator function for *S*, i.e. $y_i = 1$ if *i* ∈ *S* and $y_i = 0$ if $i \notin S$.

Then the numerator $\sum_{(i,j)\in E} w_{ij}(y_i - y_j)^2 = w(S,\overline{S})$ and denominator $\sum_{i\in V} d(i)y_i^2 = d(S)$, so the quotient gives us exactly $\varphi(S)$.

But this *y* fails to satisfy the orthogonality constraint, because $0 \neq \sum_{i \in V} d(i)y_i = d(S)$. Instead we pick real numbers *a* and *b* and assign $y_i = a$ if $i \in S$ and $y_i = b$ if $i \notin S$. We want

$$
0 = \sum_{i \in V} d(i)y_i = d(S)a + d(\overline{S})b.
$$

Solving gives

$$
a = \frac{1}{d(S)}
$$
 and $b = \frac{-1}{d(\overline{S})}$.

For this *y*,

$$
\frac{\sum_{i \sim j} w_{ij} (y_i - y_j)^2}{\sum_{i \in V} d(i) y_i^2} = \frac{w(S, \overline{S}) \left(\frac{1}{d(S)} + \frac{1}{d(\overline{S})}\right)^2}{d(S) \frac{1}{d(S)^2} + d(\overline{S}) \frac{1}{d(\overline{S})^2}} = \frac{w(S, \overline{S}) \left(\frac{1}{d(S)} + \frac{1}{d(\overline{S})}\right)^2}{\frac{1}{d(S)} + \frac{1}{d(\overline{S})}}
$$

$$
= w(S, \overline{S}) \left(\frac{1}{d(S)} + \frac{1}{d(\overline{S})}\right) = w(S, \overline{S}) \frac{d(S) + d(\overline{S})}{d(S) d(\overline{S})} = \frac{w(S, \overline{S})d(V)}{d(S) d(\overline{S})}
$$

We will prove the hard direction (right inequality) of Cheeger–Alon–Milman in the next lecture.

.