
CSCI5160 Approximation Algorithms Spring 2022
Lecturer: Siu On Chan Scribe: Siu On Chan

Notes 08: Multiplicative Weight Update

1. Online regret bound model

Suppose you want to invest in the stock market, following the predictions of n experts.
You will invest following the advice of one of the experts.
At the end of the day, the outcome is revealed.
Expert i loses mi ∈ [−1, 1]. You also lose the same amount as the expert you follow for this day.
The same is repeated for T days. The loss for different days are unrelated.
Your goal is to minimize your “regret”, i.e. loss compared with the best expert.
Note that the losses of all experts are revealed (even those you did not follow). This is different

from the bandit problem in reinforcement learning, where you only learn the outcome of the expert
you follow.

2. Weighted Majority

For this section, we assume the prediction of each expert is either “up” or “down”. we further
assume the loss of each expert on each day is either 0 or 1 (correct or wrong). Our goal is to
minimize the number of mistakes.
Weighted Majority

Fix parameter 0 ⩽ β < 1
Initialize: w1 = · · · = wn = 1
On iteration t = 1, . . . , T , poll opinions from experts

Compute total weight q0 of experts predicting “up” and total weight q1 predicting “down”
Predict according to weighted majority (predict “up” if q0 > q1; else “down”)
On revealing correct label, penalize incorrect experts:
Multiply every incorrect expert i’s weight wi by β

Theorem 2.1. For any trial sequence, if the best expert (out of n experts) makes m mistakes, then
number of mistakes of Weighted Majority is at most

logn+m log(1/β)
log(2

1+β)

e.g. β = 1− ε: ≈ (2 + 3
2ε)m+ 2

ε logn

Proof. let W = q0 + q1 = total weight of all experts (initially n)
After each mistake, at least half of W shrinks by factor β

Total weight reduces to ⩽ W
2 + βW

2 = 1+β
2 W

when Weighted Majority makes M mistakes: W ⩽ (1+β
2)Mn

when best expert makes m mistakes: wi = βm

wi ⩽ W =⇒ βm ⩽ (1+β
2)Mn ⇐⇒ m logβ ⩽ M log

(
1+β
2

)
+ logn

⇐⇒ M log
(

2
1+β

)
⩽ logn+m log(1/β) □

Note: The bound can be interpreted as

log(Winit/Wfinal)

log(1/u) where u =
1 + β

2
= shrink in W per mistake

3. Randomized Weighted Majority

We make the same assumptions as the previous section. We now consider a randomized algorithm.
1

2

Randomized Weighted Majority
Fix parameter 0 ⩽ β < 1
Initialize: w1 = · · · = wn = 1
On iteration t = 1, . . . , T , poll opinions from experts

Predict according to a random expert i chosen with probability proportional to wi

i.e. probability wi/W , where W = total weight =
∑

1⩽i⩽nwi

On revealing correct label, penalize incorrect experts:
Multiply every incorrect expert i’s weight wi by β

Denote ε = 1− β

Theorem 3.1. Given any trial sequence with fixed correct labels, if the best expert (out of n experts)
makes m mistakes, then

E[#mistakes of RWM] ⩽ lnn−m ln(1− ε)

ε

e.g. β = 1− ε: ≈ (1 + ε
2)m+ 1

ε lnn
Key benefit: ≈ m expected mistakes (ignoring additive logn), down from ≈ 2m

Proof. Fix any sequence of T trials together with their correct labels
Let Ft = fraction of total weight on wrong prediction at trial t
Want to bound E[#mistakes of RWM] =

∑
1⩽t⩽T

Ft

At trial t, probability of mistake is Ft, and εFt fraction of weight is removed
Wfinal = Winit(1− εF1) . . . (1− εFT) (Winit = n)

lnWfinal = lnn+ ln(1− εF1) + · · ·+ ln(1− εFT)

Best expert makes m mistakes: wi = βm = (1− ε)m

Wfinal ⩾ wi ⇐⇒ lnWfinal ⩾ lnwi ⇐⇒ lnn+
∑

1⩽t⩽T

ln(1− εFt) ⩾ m ln(1− ε)

Claim: ln(1− x) ⩽ −x for all x < 1
Take x = εFt in Claim, we get ln(1− εFt) ⩽ −εFt, and

ε
∑

1⩽t⩽T

Ft ⩽
∑

1⩽t⩽T

− ln(1− εFt) ⩽ lnn−m ln(1− ε) □

Above Claim is true because for all real x 1− x ⩽ e−x

e−x

1− x

4. Multiplicative Weight Update [Arora–Hazen–Kale §2]

We now assume the loss of expert i on day t is m
(t)
i ∈ [−1, 1] (negative loss means gain).

Multiplicative Weight Update
Fix parameter 0 ⩽ ε ⩽ 1/2

Initialize: w
(1)
1 = · · · = w

(1)
n = 1

On iteration t = 1, . . . , T , poll opinions from experts
Predict according to a random expert i chosen with probability proportional to w

(t)
i

i.e. probability p
(t)
i = w

(t)
i /W (t), where W (t) = total weight =

∑
1⩽i⩽nw

(t)
i

Upon revealing the loss, update w
(t+1)
i = w

(t)
i (1− εm

(t)
i)

3

Note: Multiplicative Weight Update reduces to Randomized Weighted Majority when all losses
are either 0 or 1.
Theorem 4.1. Given any trial sequence, for any expert i,

E[loss of MWU] ⩽ (total loss of expert i) + ε
∑

1⩽t⩽T

∣∣∣m(t)
i

∣∣∣+ lnn

ε

Proof. We want to bound
E[loss of MWU] =

∑
1⩽t⩽T

〈
p(t),m(t)

〉
,

where m(t) ∈ [−1, 1]n is the vector of losses on day t.

W (t+1) =
∑

1⩽i⩽n

w
(t+1)
i =

∑
1⩽i⩽n

w
(t)
i

(
1− εm

(t)
i

)
= W (t) − εW (t)

∑
1⩽i⩽n

p
(t)
i m

(t)
i = W (t)

(
1− ε

〈
p(t),m(t)

〉)
⩽ W (t) exp

(
−ε

〈
p(t),m(t)

〉)
After T rounds, W (T+1) ⩽ W (1) exp

(
−ε

∑
1⩽t⩽T

〈
p(t),m(t)

〉)
= n exp

(
−ε

∑
1⩽t⩽T

〈
p(t),m(t)

〉)
.

Using the following inequalities (which follow by convexity of the exponential function):
(1− ε)x ⩽ (1− εx) if x ∈ [0, 1]

(1 + ε)−x ⩽ (1− εx) if x ∈ [−1, 0]

We also lowerbound the final total weight by the final weight of expert i,

W (T+1) ⩾ w
(T+1)
i ⩾

∏
1⩽t⩽T

(
1− εm

(t)
i

)
⩾ (1− ε)

∑
⩾0 m

(t)
i (1 + ε)−

∑
<0 m

(t)
i

Taking logarithms on previous inequalities on W (T+1),

lnn− ε
∑

1⩽t⩽T

〈
p(t),m(t)

〉
⩾

∑
⩾0

m
(t)
i ln(1− ε)−

∑
<0

m
(t)
i ln(1 + ε).

Finally, using the approximations (valid for 0 ⩽ ε ⩽ 1/2)

ln
(

1

1− ε

)
⩽ ε+ ε2 and ln(1 + ε) ⩾ ε− ε2,

we can get the desired bound, as follows:∑
1⩽t⩽T

〈
p(t),m(t)

〉
⩽ lnn

ε
+

1

ε

∑
⩾0

m
(t)
i ln 1

1− ε
+

1

ε

∑
<0

m
(t)
i ln(1 + ε)

⩽ lnn

ε
+

1

ε

∑
⩾0

m
(t)
i (ε+ ε2) +

1

ε

∑
<0

m
(t)
i (ε− ε2)

=
lnn

ε
+

∑
1⩽t⩽T

m
(t)
i + ε

∑
⩾0

m
(t)
i − ε

∑
<0

m
(t)
i

=
lnn

ε
+

∑
1⩽t⩽T

m
(t)
i + ε

∑
1⩽t⩽T

∣∣∣m(t)
i

∣∣∣ □

The previous theorem implies that the expected regret (our expected loss minus total loss of the
best expert) is at most εT +(lnn)/ε. In this bound, the first term increases with ε while the second
decreases with ε. To minimize this upperbound, we will choose ε such that the two terms equal, so
that εT = (lnn)/ε, which means ε =

√
(lnn)/T . For this choice of ε, the upperbound simplifies to

O
(√

T lnn
)

.
Multiplicative weight update algorithms are useful for online packing, online covering, and on-

line convex optimization. See e.g. “Online Primal-Dual Algorithms for Covering and Packing”
[Buchbinder–Naor 2009]

	1. Online regret bound model
	2. Weighted Majority
	3. Randomized Weighted Majority
	4. Multiplicative Weight Update [Arora–Hazen–Kale §2]

