
CSCI5160 Approximation Algorithms Spring 2018
Lecturer: Siu On Chan Scribe: Zhi Zhen Ye

Notes 2: Ellipsoid Algorithm
We will outline the ellipsoid algorithm. Full details of the algorithm will not be covered; interested

students may consult the lecture notes [2] and the references therein (such as [1, Section 2]).
The following set of lecture notes follow [3].

1. Linear programs as satisfiability problems

Recall that a linear program (LP) takes the form
v∗ = max cTx

Ax 6 b

x > 0

where x, c ∈ Rn, b ∈ Rm and A ∈ Rm×n is a m-by-n matrix. Here x represents our LP variables,
c represents our linear objective function, and Ax 6 b are the linear constraints which means that
(Ax)i 6 bi, ∀i ∈ {1, 2, . . . , n}. The last inequality constraint x > 0 means that x has to be entry-wise
nonnegative. Let

F
def
= {x ∈ Rn | Ax 6 b and x > 0}

be the feasible region, which is the set only containing all x satisfying all constraints. We are
interested in finding a maximizer x∗ ∈ F where cTx∗ > cTx,∀x ∈ F .

Note that we can perform a reduction from this optimization problem to a satisfiability problem.
The way we do this is by doing a binary search for objective value. If we know that v∗ ∈ [low, up],
then we can do the binary search by adding constraint cTx > t and see if F ∩ {x ∈ Rn | cTx > t}
is non-empty. If so, we know v∗ ∈ [t, up]. Otherwise, v∗ ∈ [low, t). And we can keep doing this
iteratively. The number of times we incur the satisfiability solver is is O(log2(

up−low
ε )), where ε is

the precision required.
Algorithm 1: Linear Programs Solver

1 function solve (A, b, c, low, up, ε)
Input : A, b, c :=Parameter of LP

low := lower bound
up := upper bound
ε := required precision, e.g. 10−4

Output: near-optimal solution x∗ and near-optimal value v∗

2 F := {x ∈ Rn | Ax 6 b and x > 0}
3 closest_sol := 0

// Already within precision
4 if up− low > ε then

// Assume feasible returns a bool representing feasibility and a feasible
solution

5 is_feasible, x := feasible(F ∩ {x ∈ Rn | cTx > low})
6 return x, cTx

7 while up− low > ε do
8 med := low+up

2

9 is_feasible, x := feasible(F ∩ {x ∈ Rn | cTx > med})
10 if is_feasible then
11 low ← cTx

12 closest_sol← x

13 else
14 up← med
15 end
16 end
17 return closest_sol, low

1



2

Before we proceed, let’s introduce the task of checking for feasibility, and a related task of checking
whether the constraints can be robustly satisfied.

Problem 1.1 (Feasibility). Given a set of constraints C, consider the feasible set F
def
= {x ∈

Rn | x satisfies all constraints in C}. If F 6= ∅, then return any x ∈ F . Otherwise, output “F is
infeasible”.

Problem 1.2 (Robust feasibility). Given a set of constraints C and a length parameter r ∈ R+,
consider the feasible set F

def
= {x ∈ Rn | x satisfies C}. If F contains any cube of length r, return

any x ∈ F . Otherwise, output “F is infeasible”.

We claim (without giving any details) that to approximately solve a linear program, it suffices to
solve robust feasibility.

2. Ellipsoid Algorithm

Algorithm 2: Ellipsoid Algorithm
1 function feasible (C)

Input : C :=The set of constraints
Output: A feasible solution x satisfying all constraints in C

2 F := {x ∈ Rn | x satisfies all constraints in C}
3 E := initialize as a ball of radius R, s.t. F ⊆ E

4 repeat
5 c← center of E
6 if c ∈ F then return c

7 else Find a hyperplane to separate c from F . Let H be the corresponding halfspace s.t.
F ⊆ H

8 E ← smallest ellipsoid containing E ∩H

9 until E is too small
10 return “Infeasible”

Remark 2.1.
(1) In Line 8, since F ⊆ E and F ⊆ H, we know F ⊆ E ∩H. So the iterative process is clear.
(2) In terms of solving efficency, we have following claim (without proof):

Claim 2.2. Vol(new ellipsoid) 6 (1 − 1
n3 ) Vol(original ellipsoid), where n is the dimension

of ~x, the variables.

Therefore the ellipsoid E in the algorithm shrinks exponentially. Assume that the separat-
ing oracle (a black-box subroutine for finding separating hyperplane) is efficient (polynomial-
time in terms of problem size). Checking whether constraints are satisfied or not in LP is
also efficient. (Here we gloss over details about finding the smallest ellipsoid containing the
intersection.) Therefore LP is (approximately) solvable in polynomial time.

(3) For LP, a separating hyperplane may be given by a violating constraint, that is a row Ai of
A where AT

i c > bi (and this must exist). Such a row can be found in polynomial time.
(4) For SDP, the variable is a matrix. If X < 0 does not hold, then it has a negative eigenvalue.

The associated eigenvector defines a separating hyperplane in this case.

References
[1] Robert G. Bland, Donald Goldfarb, and Michael J. Todd. The ellipsoid method: A survey. Operations Research,

pages 1039–1091, 1981.
[2] Stephen Boyd. Ellipsoid method. https://stanford.edu/class/ee364b/lectures/ellipsoid_method_notes.

pdf, 2014.
[3] Ryan O’Donnell. Lecture 15, a theorist’s toolkit. http://www.cs.cmu.edu/~odonnell/toolkit13/lecture15.pdf,

2013.

https://stanford.edu/class/ee364b/lectures/ellipsoid_method_notes.pdf
https://stanford.edu/class/ee364b/lectures/ellipsoid_method_notes.pdf
http://www.cs.cmu.edu/~odonnell/toolkit13/lecture15.pdf


3

Figure 1. Ellipsoid in a single iteration


	1. Linear programs as satisfiability problems
	2. Ellipsoid Algorithm
	References

