
CSCI5160 Approximation Algorithms Spring 2018
Lecturer: Siu On Chan Scribe: Siu On Chan

Notes 1: Semidefinite Programs and Max-Cut

1. Semidefinite programs

Semidefinite programs generalize linear programs (LP). Recall that a linear program looks like
the following:

max 2x1 + 3x2 − 4x3(1)
5x1 − 8x2 + 4x3 6 10

4x1 + 3x2 − x3 6 5

x1, x2, x3 > 0

More generally, a linear program (in canonical form) takes the form

max cTx

aT1 x 6 b1

...
aTmx 6 bm

x > 0

where x, c, a1, . . . , am ∈ Rn are all n-dimensional real vectors, and b1, . . . , bm ∈ R are real scalars.
Here x represents our LP variables, c represents our linear objective function, and a1, . . . , am are
the linear constraints. The last inequality constraint x > 0 means that x has to be entry-wise
nonnegative.

By contrast, a semidefinite program (SDP) looks like the following:

max
(

2 3/2
3/2 −4

)
•
(
x1 x2
x2 x3

)
(

5 −4
−4 4

)
•
(
x1 x2
x2 x3

)
6 10(

4 3/2
3/2 −1

)
•
(
x1 x2
x2 x3

)
6 5(

x1 x2
x2 x3

)
< 0

Here • denotes the Frobenius/Hadamard inner product between two matrices, defined as the entry-
wise inner product between two n-by-n matrices

A •B def
=

∑
16i,j6n

AijBij .

The above semidefinite program has exactly the same objective function as the linear program (1)
above, because (

2 3/2
3/2 −4

)
•
(
x1 x2
x2 x3

)
= 2x1 + 3x2 − 4x3 .

Compared to (1), the main difference is that the final nonnegative constraint is replaced with a
positive semidefinite constraint, as defined now.

Definition 1.1. A symmetric n-by-n matrix M is positive semidefinite if for every y ∈ Rn, the
quadratic form yTMy > 0.

1



2

A general semidefinite program takes the form

max C •X
A1 •X 6 b1

...
Am •X 6 bm

X < 0

where X,C,A1, . . . , Am are all n-by-n real symmetric matrices, and b1, . . . , bm ∈ R are real scalars.
The matrix X represents our SDP variables.

2. Positive semidefiniteness

The positive semidefinite (PSD) condition has a number of equivalent definitions.

Proposition 2.1. Given a symmetric n-by-n matrix M , the following are equivalent:
(a) For every y ∈ Rn, we have yTMy > 0
(b) All eigenvalues of M are nonnegative
(c) X = UTU for some n-by-n matrix U (U is not necessarily symmetric)

The condition (c) is equivalent to saying that there are n vectors u1, . . . , un ∈ Rn such that X
encodes the inner products between them. More precisely, Xij = uTi uj , namely the ij-entry of X
equals the inner product between the i- and the j-vectors. To see this, simply define u1, . . . , un as
the column vectors of U , and condition (c) becomes

X =

u1
u2
...
un

u1u2 un. . .

.
To prove the proposition, we will use the following theorem.

Theorem 2.2 (Spectral theorem for real symmetric matrices). Any n-by-n real symmetric matrix
M has n real eigenvalues λ1, . . . , λn and n orthonormal eigenvectors v1, . . . , vn. Equivalently, we
can express any such an M as

(2) M = V ΛV T ,

where V is an n-by-n matrix whose columns are precisely the eigenvectors v1, . . . , vn, and Λ is a
diagonal matrix with eigenvalues λ1, . . . , λn on its diagonal (Λii = λi). Since the eigenvectors are
orthonormal, we also have V TV = V V T = I. Decomposition (2) can be represented in picture as

M = v1 v2 vn. . .

v1
v2
...
vn

λ1
λ2

. . .
λn ,

or as a sum of outer products
M =

∑
16i6n

λiviv
T
i .

Proof of the proposition. (a) ⇒ (b): We prove the contrapositive; if (b) is violated, then so must
(a). If M has a negative eigenvalue, say λi, we simply take y to be its corresponding eigenvector vi,
and the quadratic form becomes

yTMy = vTi Mvi = λi < 0 ,

violating condition (a).
(b) ⇒ (c): Let

√
Λ be the diagonal matrix with

√
λ1, . . . ,

√
λn on its diagonal (

√
Λii =

√
λi),

and let U =
√
ΛV T . Since M has only nonnegative eigenvalues (and they lie on the diagonal),



3

√
Λ has only real entries. Also (

√
Λ)T =

√
Λ because it is a diagonal matrix. Then the spectral

decomposition (2) becomes
M = V

√
Λ
T√

ΛV T = UTU ,

where U =
√
ΛV T .

(c) ⇒ (a): For any y ∈ Rn,

yTMy = yTUTUy = ‖Uy‖22 > 0 . �

3. LP vs SDP

Every linear program can be represented as a semidefinite program. For example, the linear
program in (1) is equivalent to a semidefinite program with a 3-by-3 symmetric matrix X as its
variables, and we may add additional constraints to force X to be diagonal (by making every off-
diagonal entry to be zero). We can also make the objective matrix C diagonal, that is, the SDP
objective function becomes

C •X =

2
3

−4

 •

x1
x2

x3

 = 2x1 + 3x2 − 4x3 ,

exactly the same as the linear program objective. The positive semidefinite constraint X < 0 is
equivalent to requiring all diagonal entries of X to be nonnegative, and is the same as the nonnegative
constraints x1, x2, x3 > 0 in the linear program (1).

In general, a semidefinite program reduces to a linear program when the objective matrix C and
constraint matrices A1, . . . , Am are all diagonal matrices.

Recall that a linear program amounts to maximizing a linear objective function in a polyhedron
(a region that is the intersection of halfspaces of the form {x ∈ Rn | aTi x 6 bi}).

A semidefinite program amounts to maximizing a linear objective function in a feasible region whose
boundary may involve curves. For example, its feasible region may be the unit circle.

This can happen with the positive semidefinite constraint

(3)

1 x y
x 1 0
y 0 1

 < 0

and certain matrix entries have been forced to be either 0 or 1 as indicated. Since a matrix is
positive semidefinite precisely when all its principal minors are nonnegative (look up “Sylvester’s
criterion” on Wikipedia), (3) is equivalent to the following three constraints:

1 > 0

1− x2 > 0

1− x2 − y2 > 0 .

The first constraint is trivial, and the last constraint dominates the second. This shows that (3) is
equivalent to (x, y) being inside the unit circle.

If a linear program involves only rational entries, then its optimal solution must also have only
rational entries. The same is not necessarily true for a semidefinite program, as the previous circle
example demonstrates. For instance, if we maximize along the direction (1, 1) over the unit circle,



4

the optimal solution (1/
√
2, 1/

√
2) has irrational entries. We cannot hope to represent a SDP

optimal solution exactly, partly explaining why the algorithms for solving SDP we describe later
can only look for an approximate solution.

Finally, if a linear program has finite optimum value, then the optimum value is achieved by some
solution. This is again not always true for a semidefinite program. Here is a counterexample:

min x(
x 1
1 y

)
< 0

We are minimizing x, but it’s equivalent to maximizing −x. The PSD constraint is satisfied when
x, y > 0 and xy > 1. Equivalently, when y > 0 and x > 1/y. The SDP optimum value is zero, by
choosing smaller and smaller x > 0, but x = 0 is not feasible. This shows that the “minimum” is in
fact an infinum.

4. Max-Cut and Goemans–Williamson rounding

A classical problem is to find a subset S ⊆ V (G) maximizing the number of edges going between
S and V (G) \ S. This Max-Cut problem is known to be NP-hard to solve exactly, so we will settle
for an approximation algorithm.

Theorem 4.1 (Goemans–Williamson [2]). There is a polynomial-time algorithm to approximate
Max-Cut to within 0.878 . . .

In other words, if the best cut in a graph with 10000 cross edges, then the algorithm will return a
cut with at least 8780 cross edges. The algorithm is based on a semidefinite program first proposed
by Delorme and Poljak [1]. The rounding algorithm came from a seminal work by Goemans and
Williamson, where they interpret the SDP as a vector optimization program. To motivate the vector
program, first formulate Max-Cut as the following quadratic integer program:

max
∑

(u,v)∈E

1− xuxv
2

xu ∈ {+1,−1} for every u ∈ V (G)

Given any candidate solution S to Max-Cut, if we assign −1 to vertices in S and +1 to vertices
outside S, then the term (1 − xuxv)/2 will be either 1 or 0, depending on whether the edge (u, v)
crosses the cut. Therefore the objective function measures exactly the total number of cut edges.
We are assigning ±1 rather than {0, 1} because it will simplify the calculations to come.

The above quadratic integer program is equivalent to Max-Cut and is NP-hard to solve exactly,
so we relax the problem by instead assigning a vector to every vertex. We arrive at the following
vector program.

max
∑

(u,v)∈E

1− 〈yu, yv〉
2

(4)

‖yu‖22 = 1 for every u ∈ V (G)

yu ∈ Rn for every u ∈ V (G)

The norm constraint ‖yu‖22 = 1 says that we are assigning a unit vector to every vertex. Here the
dimension n of the space containing the vectors equals the number of vertices of G.

Claim 4.2. The vector program optimum value is always at least the Max-Cut optimum value.

Proof. Pick any unit vector y0 ∈ Rn. Given a candidate solution S to Max-Cut, we assign −y0
to vertices in S and y0 to vertices outside S. Then the term (1 − 〈yu, yv〉)/2 will be either 1 or 0,
depending on whether the edge (u, v) crosses the cut. Therefore there is always a vector assignment
with value at least as large as the number of edges crossing S. �

When yu and yv are both unit vectors, the objective function is a sum of terms of the form

(1− 〈yu, yv〉)/2 = (‖yu‖22 − 2〈yu, yv〉+ ‖yv‖22)/4 = ‖yu − yv‖22/4 .



5

Therefore the vector program is seeking a mapping of vertices to the high dimensional unit sphere
that maximizes the sum of squared distances between endpoints of an edge.

The vector program (4) is equivalent to the following semidefinite program (that can be solved
efficiently):

max
∑

(u,v)∈E

1

4
Luv • Y(5)

Yuu = 1 for every u ∈ V (G)

Y < 0 ,

where Luv is the matrix that is zero everywhere, except that it is 1 at uu and vv entries, and is −1
at uv and vu entries. Recall that the PSD constraint means Y encodes the inner products between
vectors {yu}u∈V (G), so that Yuv = 〈yu, yv〉. One can check that Luv • Y /4 = ‖yu − yv‖22/4, which
equals (1− 〈yu, yv〉)/2 for unit vectors yu and yv, so (5) and (4) have the same objective functions.
The constraint Yuu = 1 in the SDP (5) is identical to ‖yu‖22 = 1 in the vector program (4). In
general, any SDP is equivalent to a vector optimization problem with linear objective function and
linear constraints on inner products.

the origin in R
n (Figure 2). The partition of Rd given by H yields a cut in our graph.

Since the construction pushes adjacent points apart, one expects that the random cut will
intersect many edges.

Figure 2: A cut in the graph given by a random hyperplane

To be more precise, let ij ∈ E and let ui, uj ∈ Sn−1 be the corresponding vectors in
the embedding constructed above. It is easy to see that the probability that a random
hyperplane H through 0 separates ui and uj is αij/π, where αij = arccos uT

i uj is the
angle between ui and uj . It is not difficult to verify that if −1 ≤ t ≤ 1, then arccos t ≥
1.38005(1 − t). Thus the expected number of edges intersected by H is

∑

ij∈E

arccos uT

i uj

π
≥
∑

ij∈E

1.38005
1 − uT

i uj

π
=

1.38005

π
2(−E) ≥ .878MC.

(One objection to the above algorithm could be that it uses random numbers. In fact,
the algorithm can be derandomized by well established but non-trivial techniques. We do
not consider this issue in these notes; see e.g. [5], Chapter 15 for a survey of derandomization
methods.)

2 Preliminaries

We collect some of the basic results from linear programming, linear algebra, and polyhedral
combinatorics that we will use. While this is all textbook material, it will be convenient to
have this collection of results for the purposes of notation, reference and comparison. [88]
is a reference for linear algebra, and a [79], for linear programming.

2.1 Linear algebra

As the title of these lecture notes suggests, we’ll be concerned with semidefinite matrices;
to get to these, we start with a review of eigenvalues, and in particular eigenvalues of
symmetric matrices.

Let A be an n × n real matrix. An eigenvector of A is a vector such that Ax is parallel
to x; in other words, Ax = λx for some real or complex number λ. This number λ is called
the eigenvalue of A belonging to eigenvector v. Clearly λ is an eigenvalue iff the matrix

6

Figure 1. Random hyperplane rounding (picture from [3])

Given a solution to the vector program, Goemans–Williamson proposed to randomly round them
into a cut, by picking a random hyperplane, and putting all vectors on one side of the hyperplane
to S. In other words, one pick a random unit vector g ∈ Rn (a normal vector to the hyperplane),
and set S = {u ∈ V | 〈yu, g〉 > 0}. We now show that, in expectation, this random subset S cuts at
least 0.878 . . . fraction of edges in the optimal cut.

Proposition 4.3.
E[number of edges cut] > 0.878 · · · × SDP-OPT ,

where SDP-OPT denotes the optimum value of the SDP (or the vector program).

Note that the proposition together with Claim 4.2 implies Theorem 4.1 (at least in expectation).

Proof of proposition. Let {yu}u∈V be an optimal vector assignment to (4). Expand

E[number of edges cut] =
∑

(u,v)∈E
E[1((u, v) is cut by S)]

by linearity of expectation. Focusing on each summand, each edge (u, v) is cut with probability
θuv/π, where θuv is the angle between yu and yv. In other words, θuv = arccos〈yu, yv〉.

yu
yv

θuv

On the other hand, each edge (u, v) contributes (1 − 〈yu, yv〉)/2 = (1 − cos θuv)/2 to the vector
program. We now compare the contribution to the cutting probability and the contribution to the
vector program.



6

Lemma 4.4 (Goemans–Williamson). For every 0 6 θ 6 π,
θ

π
> 0.878 · · · × 1− cos θ

2
.

This lemma can be proved rigorously by taking derivatives. We will not do so, but instead only
“prove” with a plot of f(θ) = θ

π

/
1−cos θ

2 :

0.5 1 1.5 2 2.5 3

1

2

3

4

θ
π

/
1−cos θ

2

Therefore

E[number of edges cut] =
∑

(u,v)∈E
P[(u, v) is cut by S] =

∑
(u,v)∈E

θuv
π

> 0.878 · · · ×
∑

(u,v)∈E

1− 〈yu, yv〉
2

= 0.878 · · · × SDP-OPT. �

We remark that Goemans–Williamson algorithm also works with the weighted version of the
problem, where each edge (u, v) has a nonnegative weight wuv, and we seek to maximizing the sum
of weights of edges crossing the cut.

References
[1] Charles Delorme and Svatopluk Poljak. Laplacian eigenvalues and the maximum cut problem. Mathematical Pro-

gramming, 62(3, Ser. A):557–574, 1993.
[2] Michel Xavier Goemans and David Paul Williamson. Improved approximation algorithms for maximum cut and

satisfiability problems using semidefinite programming. Journal of the ACM, 42(6):1115–1145, November 1995.
[3] László Lovász. Semidefinite programs and combinatorial optimization. In Recent advances in algorithms and com-

binatorics, volume 11 of CMS Books Math./Ouvrages Math. SMC, pages 137–194. Springer, New York, 2003.


	1. Semidefinite programs
	2. Positive semidefiniteness
	3. LP vs SDP
	4. Max-Cut and Goemans–Williamson rounding
	References

