Week 4 Tutorial Session

- 1. For any integer $k \ge 0$, define $L_k = \{ww \mid w \in \{0, 1\}^k\}$.
 - (a) Write down all strings in L_3 .
 - (b) Prove that any DFA for L_k has at least 2^k states. Hint: After reading the first half of the input, what should the DFA remember? Can you come up with a set of 2^k strings that are pairwise distinguishable by L_k ?
- 2. Let L be any language. We say that two strings x and y are *indistinguishable by* L if for every string z, we have $xz \in L$ if and only if $yz \in L$.
 - (a) For concreteness, consider $L_1 = \{x \in \{0, 1\}^* \mid \text{the number of 1's in } x \text{ is divisible by 3}\}$. Prove that 1 and 1111 are indistinguishable by L_1 .
 - (b) Continuing with (a), which strings are indistinguishable from the string 1 by L_1 ? The set of all such strings is the *equivalence class* of the string 1 and will be denoted by [1].
 - (c) Find a string s not in [1]. What is the equivalence class of s? (We will denote this equivalence class by [s])
 - (d) Can you find another string t not in [1] or [s]? What is the equivalence class of t?
 - (e) Can you find yet another string u not in these equivalence classes?
 - (f) Design a DFA for the language L_1 . How are the states in your DFA related to the equivalence classes?