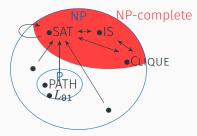
Cook-Levin Theorem

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2020

Chinese University of Hong Kong

NP-completeness



Theorem (Cook-Levin)

Every language in NP polynomial-time reduces to SAT

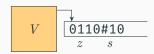
Every $L \in \mathsf{NP}$ polynomial-time reduces to SAT

Need to find a polynomial-time reduction R such that

NP-completeness of SAT

All we know: L has a polynomial-time verifier V

Tableau of computation history of



 $z \in L$ if and only if V accepts $\langle z, s \rangle$ for some s

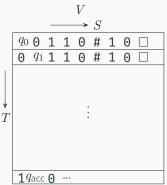
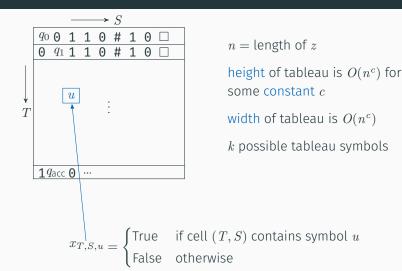
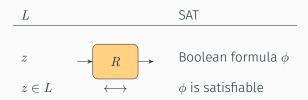


Tableau of computation history





Will design a formula ϕ such that

variables of ϕ assignment to $x_{T,S,u}$ satisfying assignment ϕ is satisfiable

 $x_{T,S,u}$

- pprox assignment to tableau symbols
- $\leftrightarrow \quad \text{accepting computation history}$
- $\leftrightarrow \quad V \text{ accepts } \langle z,s\rangle \text{ for some }s$

Will construct in $O(n^{2c})$ time a formula ϕ such that $\phi(x)$ is True precisely when the assignment to $\{x_{T,S,u}\}$ represents legal and accepting computation history

 $\phi = \phi_{\text{cell}} \land \phi_{\text{init}} \land \phi_{\text{move}} \land \phi_{\text{acc}}$

 $\phi_{\rm cell}$: Exactly one symbol in each cell

 ϕ_{init} : First row is $q_0 z \# s$ for some s ϕ_{move} : Moves between adjacent rows follow the transitions of V ϕ_{acc} : Last row contains q_{acc}

q_0	0	1	1	0	#	1	0	
0	q_1	1	1	0	#	1	0	
				:				
19	acc	0						

$$\phi_{\rm cell} = \phi_{\rm cell,1,1} \wedge \dots \wedge \phi_{\rm cell,\#rows,\#cols} \quad {\rm where}$$

$$\phi_{\text{cell},T,S} = (x_{T,S,1} \lor \cdots \lor x_{T,S,k}) \quad \text{at least one symbol} \\ \land \overline{(x_{T,S,1} \land x_{T,S,2})} \\ \land \overline{(x_{T,S,1} \land x_{T,S,3})} \\ \vdots \\ \land \overline{(x_{T,S,k-1} \land x_{T,S,k})} \end{cases} \quad \text{no two symbols in one cell}$$

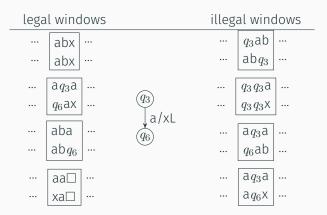
First row is $q_0 z \# s$ for some s

$$\phi_{\text{init}} = x_{1,1,q_0} \land x_{1,2,z_1} \land \dots \land x_{1,n+1,z_n} \land x_{1,n+2,\sharp}$$

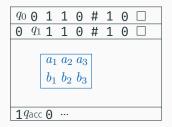
Last row contains q_{acc} somewhere

 $\phi_{\rm acc} = x_{\rm \#rows,1,q_{\rm acc}} \lor \dots \lor x_{\rm \#rows, \#cols,q_{\rm acc}}$

Legal and illegal transitions windows



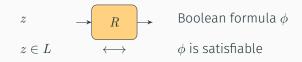
ϕ_{move} : moves between rows follow transitions of V



$$\phi_{\text{move}} = \phi_{\text{move},1,1} \wedge \dots \wedge \phi_{\text{move},\#\text{rows}-1,\#\text{cols}-2}$$

$$\phi_{\text{move},T,S} = \bigvee_{\substack{\text{legal} \begin{bmatrix} a_1 a_2 a_3 \\ b_1 b_2 b_3 \end{bmatrix}}} \begin{pmatrix} x_{T,S,a_1} \land x_{T,S+1,a_2} \land x_{T,S+2,a_3} \land \\ x_{T+1,S,b_1} \land x_{T+1,S+1,b_2} \land x_{T+1,S+2,b_3} \end{pmatrix}$$

NP-completeness of SAT



Let V be a polynomial-time verifier for L

 $R = \mathsf{On} \text{ input } z$

- 1. Construct the formulas $\phi_{\text{cell}}, \phi_{\text{init}}, \phi_{\text{move}}, \phi_{\text{acc}}$
- 2. Output $\phi = \phi_{\text{cell}} \wedge \phi_{\text{init}} \wedge \phi_{\text{move}} \wedge \phi_{\text{acc}}$

R takes time $O(n^{2c})$

V accepts $\langle z, s \rangle$ for some s if and only if ϕ is satisfiable

NP-completeness: More examples

k-cover for triangles: k vertices that touch all triangles

Has 2-cover for triangles? Yes

Has 1-cover for triangles? No, it has two vertex-disjoint triangles

 $\mathsf{TRICOVER} = \{ \langle G, k \rangle \mid G \text{ has a } k \text{-cover for triangles} \}$

TRICOVER is NP-complete

```
What is a solution for TRICOVER?
A subset of vertices like {D,F}
```

 $V = \text{On input } \langle G, k, S \rangle$, where S is a set of k vertices

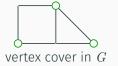
- For every triple (u, v, w) of vertices:
 If (u, v), (v, w), (w, u) are all edges in G:
 If none of u, v, w are in S, reject
- 2. Otherwise, accept

Running time = $O(n^3)$

 $VC = \{ \langle G, k \rangle \mid G \text{ has a vertex cover of size } k \}$ Some vertex in every edge is covered

TRICOVER = { $\langle G, k \rangle | G$ has a k-cover for triangles} Some vertex in every triangle is covered

 R_{i}

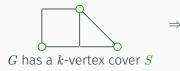


cover for triangles in G'

 $R = \text{On input } \langle G, k \rangle, \text{ where graph } G \text{ has } n \text{ vertices and } m \text{ edges}$ 1. Construct the following graph G': G' has n + m vertices: v_1, \dots, v_n are vertices from Gintroduce a new vertex u_{ij} for every edge (v_i, v_j) of GFor every edge (v_i, v_j) of G: include edges $(v_i, v_j), (v_i, u_{ij}), (u_{ij}, v_j)$ in G'2. Output $\langle G', k \rangle$

Running time is O(n+m)

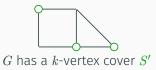
$\langle G, k \rangle \in \mathsf{VC} \quad \Rightarrow \quad \langle G', k \rangle \in \mathsf{TRICOVER}$



G' has a k-triangle cover S old triangles from G are covered new triangles in G' also covered

$\langle G, k \rangle \in \mathsf{VC} \quad \Leftarrow \quad \langle G', k \rangle \in \mathsf{TRICOVER}$

 \Leftarrow



 S^\prime is obtained after moving some vertices of S

Since S' covers all triangles in G', it covers all edges in G

G' has a k-triangle cover S

Some vertices in S may not come from G!

But we can move them and still cover the same triangle