Efficient Turing Machines

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2020

Chinese University of Hong Kong

Undecidability of PCP (optional)

 $PCP = \{\langle C \rangle \mid C \text{ is a finite collection of tiles}$ $containing a top-bottom match\}$

A top-bottom match is a finite sequence of tiles from ${\cal C}$ (possibly repeated) such that the top string equals the bottom string

The language PCP is undecidable

We will show that

If PCP can be decided, so can A_{TM}

We will only discuss the main idea, omitting details

$$\langle M, w \rangle \longmapsto C$$
 (collection of tiles) M accepts $w \iff C$ contains a match

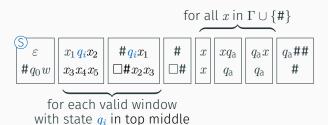
Idea: Matches represent accepting history

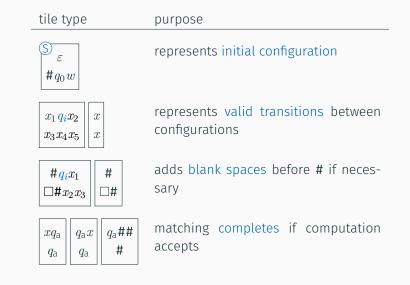
$$\#q_0$$
ab%ab $\#xq_1$ b%ab $\#...\#xx$ % xq_a x $\#$
 $\#q_0$ ab%ab $\#xq_1$ b%ab $\#...\#xx$ % x q_a x $\#$

$$\langle M \rangle \longmapsto C \text{ (collection of tiles)}$$
 $M \text{ accepts } w \iff C \text{ contains a match}$

We will assume that the following tile is forced to be the starting tile:

On input $\langle M, w \rangle$, we construct these tiles for PCP





Once the accepting state symbol occurs, the last two tiles can "eat up" the rest of the symbols

$$\#xx\%xq_ax\#xx\%xq_a\#...\#q_a\#\#$$

$$\#xx\%xq_ax\#xx\%xq_a\#...\#q_a\#\#$$

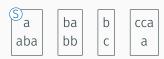
$$\begin{bmatrix} x \\ x \end{bmatrix} \begin{bmatrix} xq_{\mathsf{a}} \\ q_{\mathsf{a}} \end{bmatrix} \begin{bmatrix} q_{\mathsf{a}}x \\ q_{\mathsf{a}} \end{bmatrix} \begin{bmatrix} q_{\mathsf{a}}\#\#\\ \#\end{bmatrix}$$

If M rejects on input w, then $q_{\rm rej}$ appears on the bottom at some point, but it cannot be matched on top

If M loops on w, then matching goes on forever

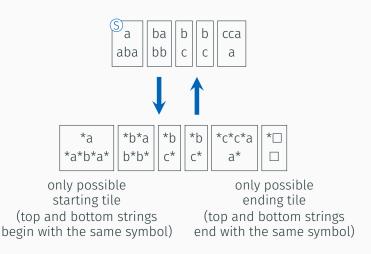
Getting rid of the starting tile

We assumed that one tile is marked as the starting tile (the only tile that can start a match)



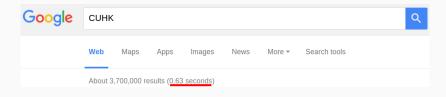
We can simulate this assumption by changing tiles a bit

Getting rid of the starting tile



Polynomial time

Running time



We don't want to just solve a problem, we want to solve it quickly

Efficiency

Undecidable problems: We cannot find solutions in any finite amount of time

Decidable problems: We can solve them, but it may take a very long time

Efficiency

The running time depends on the input

For longer inputs, we should allow more time

Efficiency is measured as a function of input size

Running time

The running time of a Turing machine M is the function $t_M(n)$:

$$t_M(n) = \max \max number of steps that M takes on any input of length $n$$$

Example:
$$L = \{w \# w \mid w \in \{\mathtt{a},\mathtt{b}\}^*\}$$

M: On input x , until you reach $\#$

Read and cross of first \mathtt{a} or \mathtt{b} before $\#$

Read and cross off first \mathtt{a} or \mathtt{b} after $\#$

If mismatch, reject

If all symbols except $\#$ are crossed off, accept $O(n)$ steps

running time: $O(n^2)$

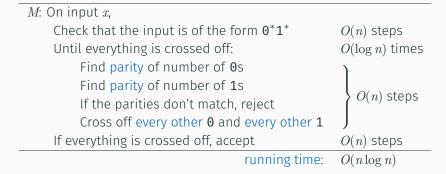
Another example

$$L = \{ \mathbf{0}^n \mathbf{1}^n \mid n \geqslant 0 \}$$

M: On input x ,	
Check that the input is of the form $0*1*$	O(n) steps
Until everything is crossed off:	O(n) times
Cross off the leftmost 0	$\int_{-\infty}^{\infty} O(\pi) \operatorname{stons}$
Cross off the following 1	$\left. \begin{array}{l} O(n) \text{ steps} \end{array} \right.$
If everything is crossed off, accept	O(n) steps
running time.	$O(n^2)$

A faster way

$$L = \{ \mathbf{0}^n \mathbf{1}^n \mid n \geqslant 0 \}$$



Running time vs model

What if we have a two-tape Turing machine?

$$L = \{ \mathbf{0}^n \mathbf{1}^n \mid n \geqslant 0 \}$$

M: On input x,	
Check that the input is of the form $0*1*$	O(n) steps
Copy 9 * part of input to second tape	O(n) steps
Until □ is reached:)
Cross off next 1 from first tape	O(n) steps
Cross off next 0 from second tape	J
If both tapes reach \square simultaneously, accept	O(n) steps
running time:	O(n)

Running time vs model

How about a Java program?

```
L = \{ \mathbf{0}^n \mathbf{1}^n \mid n \geqslant 0 \}
```

```
M(int[]x) {
  n = x.len;
  if (n % 2 != 0) reject();
  for (i = 0; i < n/2; i++) {
    if (x[i] != 0) reject();
    if (x[n-i+1] != 1) reject();
  accept();
```

running time: O(n)

Running time can change depending on the model

1-tape TM 2-tape TM
$$O(n \log n)$$
 $O(n)$

2-tape TM
$$O(n)$$

Java
$$O(n)$$

Measuring running time

What does it mean when we say

This algorithm runs in time T

One "time unit" in

Random access machine

write r3

all mean different things!

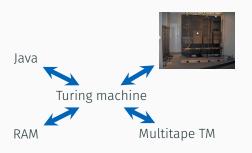
if
$$(x > 0)$$

y = $5*y + x$;

$$\delta(\mathit{q}_3,\mathsf{a})=(\mathit{q}_7,\mathsf{b},\mathit{R})$$

Efficiency and the Church-Turing thesis

Church–Turing thesis says all these have the same computing power...



...without considering running time

Cobham-Edmonds thesis

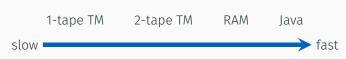
An extension to Church-Turing thesis, stating

For any realistic models of computation M_1 and M_2 M_1 can be simulated on M_2 with at most polynomial slowdown

So any task that takes time t(n) on M_1 can be done in time (say) $O(t^3)$ on M_2

Efficient simulation

The running time of a program depends on the model of computation

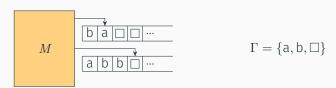


But if you ignore polynomial overhead, the difference is irrelevant

Every reasonable model of computation can be simulated efficiently on any other

Example of efficient simulation

Recall simulating two tapes on a single tape

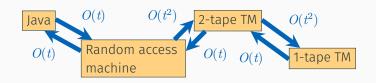


Running time of simulation

Each move of the multitape TM might require traversing the whole single tape

$$\begin{array}{ll} \text{1 step of 2-tape TM} & \Rightarrow & O(s) \text{ steps of single tape TM} \\ & s = \text{right most cell ever visited} \\ \text{after } t \text{ steps} & \Rightarrow & s \leqslant n+2t+O(1) = O(n+t) \\ & n = \text{input length} \\ t \text{ steps of 2-tape} & \Rightarrow & O(ts) = O(t(n+t)) \text{ single tape steps} \\ & = O(t^2) \text{ if } t \geqslant n \end{array}$$

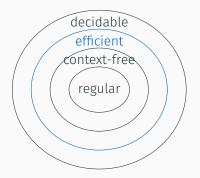
Simulation slowdown



Cobham-Edmonds thesis:

 $\it M_1$ can be simulated on $\it M_2$ with at most polynomial slowdown

The class P



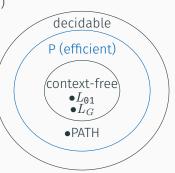
P is the class of languages that can be decided on a TM with polynomial running time

By Cobham–Edmonds thesis, they can also be decided by any realistic model of computation e.g. Java, RAM, multitape TM

Examples of languages in P

P is the class of languages that are decidable in polynomial time (in the input length)

$$L_{01} = \{ \mathbf{0}^n \mathbf{1}^n \mid n \geqslant 0 \}$$
 $L_G = \{ w \mid \mathsf{CFG} \ G \ \mathsf{generates} \ w \}$
PATH $= \{ \langle G, s, t \rangle \mid \mathsf{Graph} \ G \ \mathsf{has}$
a path from node s to node $t \}$

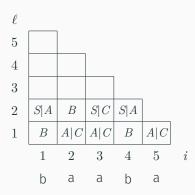


Context-free languages in polynomial time

Let L be a context-free language, and G be a CFG for L in Chomsky Normal Form

If there is a production $A \to x_i$ Put A in table cell T[i,1] For cells $T[i,\ell]$ If there is a production $A \to BC$ where B is in cell T[i,j] and C is in cell $T[i+j,\ell-j]$ Put A in cell $T[i,\ell]$

CYK algorithm:



On input x of length n, running time is $O(n^3)$

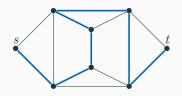
PATH in polynomial time

```
PATH = \{\langle G, s, t \rangle \mid Graph G has \}
                    a path from node s to node t}
                   G has n vertices, m edges
M = \text{On input } \langle G, s, t \rangle
  where G is a graph with nodes s and t
  Place a mark on node s
  Repeat until no additional nodes are marked:
                                                       O(n)
    Scan the edges of G
                                                       O(m)
    If some edge has both marked and unmarked endpoints
       Mark the unmarked endpoint
  If t is marked, accept
                                     running time:
                                                       O(mn)
```

Hamiltonian paths

A Hamiltonian path in G is a path that visits every node exactly once

$$\mbox{HAMPATH} = \{\langle G, s, t \rangle \mid \mbox{Graph G has a} \\ \mbox{Hamiltonian path from node s to node t} \}$$



We don't know if HAMPATH is in P, and we believe it is not