Undecidability and Reductions

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2020

Chinese University of Hong Kong

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid \mathsf{Turing machine } M \mathsf{ accepts input } w \}$

Turing's Theorem

The language A_{TM} is undecidable

Note: a Turing machine M may take as input its own description $\langle M \rangle$

Turing's Theorem: Proof sketch (in Python)

D checks whether itself halts using H and does the opposite

def D():
 if H(D):
 loop_forever()

Does D halt?

Proof by contradiction:

Suppose A_{TM} is decidable, then some TM *H* decides A_{TM} :

Proof by contradiction:

Suppose A_{TM} is decidable, then some TM *H* decides A_{TM} :

Construct a new TM D (that uses H as a subroutine):

Turing machine D: On input $\langle M \rangle$

- 1. Run *H* on input $\langle M, \langle M \rangle \rangle$
- 2. Output the opposite of *H*: If *H* accepts, reject; if *H* rejects, accept

Formal proof of Turing's Theorem

Formal proof of Turing's Theorem

 ${\it H}\,{\rm never}$ loops indefinitely, neither does ${\it D}$

If D rejects $\langle D \rangle$, then D accepts $\langle D \rangle$ If D accepts $\langle D \rangle$, then D rejects $\langle D \rangle$ Contradiction! D cannot exist! H cannot exist! Proof by contradiction

Assume A_{TM} is decidable

Then there are TM H, H' and D

But D cannot exist!

Conclusion

The language A_{TM} is undecidable

		all possible inputs w					
		ε	0	1	00		
S	M_1	acc	rej	rej	acc		
ssible ; machine	M_2	rej	acc	loop	rej		
	M_3	rej	loop	rej	rej		
	M_4	acc	rej	acc	loop		
all po Turing			:				

Write an infinite table for the pairs (M, w)

(Entries in this table are all made up for illustration)

		inputs w				
		$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	
ssible machines	M_1	acc	loop	rej	rej	
	M_2	rej	rej	acc	rej	
	M_3	loop	acc	acc	acc	
	M_4	acc	acc	loop	acc	
all po Turing			÷			

Only look at those w that describe Turing machines

		inputs w				
		$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	
ll possible uring machines	M_1	acc	loop	rej	rej	
	M_2	rej	rej	acc	rej	
	M_3	loop	acc	acc	acc	
	÷		÷			
	D	rej	acc	rej	rej	
Д	÷		÷			

If $A_{\rm TM}$ is decidable, then TM D is in the table

Diagonalization

 \boldsymbol{D} does the opposite of the diagonal entries

 $D \text{ on } \langle M_i \rangle = \text{opposite of } M_i \text{ on } \langle M_i \rangle$

$$\langle D \rangle \longrightarrow D \qquad \longrightarrow \text{ accept if } D \text{ rejects or loops on } \langle D \rangle \\ \longrightarrow \text{ reject if } D \text{ accepts } \langle D \rangle$$

We run into trouble when we look at $(D, \langle D \rangle)$

The language A_{TM} is recognizable but not decidable

How about languages that are not recognizable?

 $\overline{A_{\mathsf{TM}}} = \{ \langle M, w \rangle \mid M \text{ is a TM that does not accept } w \}$ $= \{ \langle M, w \rangle \mid M \text{ rejects or loops on input } w \}$

Claim

The language $\overline{A_{\text{TM}}}$ is not recognizable

If L and \overline{L} are both recognizable, then L is decidable

Proof of Claim from Theorem:

We know $A_{\rm TM}$ is recognizable if $\overline{A_{\rm TM}}$ were also, then $A_{\rm TM}$ would be decidable

But Turing's Theorem says $A_{\rm TM}$ is not decidable

If L and \overline{L} are both recognizable, then L is decidable

Proof idea (flawed):

Let M = TM recognizing L, M' = TM recognizing \overline{L}

The following Turing machine N decides L:

Turing machine N: On input w

- 1. Simulate M on input w. If M accepts, accept
- 2. Simulate M' on input w. If M' accepts, reject

If L and \overline{L} are both recognizable, then L is decidable

Proof idea (flawed):

Let M = TM recognizing L, M' = TM recognizing \overline{L}

The following Turing machine N decides L:

Turing machine *N*: On input *w*

1. Simulate *M* on input *w*. If *M* accepts, accept

2. Simulate M' on input w. If M' accepts, reject

Problem: If *M* loops on *w*, we will never go to step 2

If L and \overline{L} are both recognizable, then L is decidable

Proof idea (2nd attempt):

Let M = TM recognizing L, M' = TM recognizing \overline{L}

The following Turing machine N decides L:

Turing machine N:On input wFor t = 0, 1, 2, 3, ...Simulate first t transitions of M on input w.If M accepts, acceptSimulate first t transitions of M' on input w.If M' accepts, reject

Reductions

Reducing B to A

Transform program R that solves A into program S that solves B

If you can reduce B to A

Then you can solve problem B using subroutine R as a blackbox

Example from Lecture 16:

 $A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$

 $A_{\text{NFA}} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts input } w \}$

 $A_{\rm NFA}$ reduces to $A_{\rm DFA}$ (by converting NFA into DFA)

Reductions in this course

If language *B* reduces to language *A*, and *B* is undecidable then *A* is also undecidable

Steps for showing a language A to be undecidable:

- 1. If some TM R decides A
- 2. Using R, build another TM S that decides $B = A_{\text{TM}}$

But by Turing's theorem, $A_{\rm TM}$ is not decidable

$HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \}$

We'll show:

 $HALT_{TM}$ is an undecidable language

We will argue that If HALT_TM is decidable, then so is $A_{\rm TM}$

If HALT_TM can be decided, so can $A_{\rm TM}$

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \}$

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$

Suppose ${\rm HALT}_{\rm TM}$ is decidable by a Turing machine H

Then the following TM S decides $A_{\rm TM}$

Turing machine S:On input $\langle M, w \rangle$ Run H on input $\langle M, w \rangle$ If H rejects, rejectIf H accepts, run the universal TM U on input $\langle M, w \rangle$ If U accepts, accept; else reject

$A'_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \}$

Is A'_{TM} decidable? Why?

$A'_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \}$

Is $A'_{\rm TM}$ decidable? Why?

Undecidable!

Intuitive reason:

To know whether M accepts ε seems to require simulating M

But then we need to know whether M halts

Let's justify this intuition

Example 1: Figuring out the reduction

M′ should be a Turing machine such that

outcome of M' on input $\varepsilon = \operatorname{outcome}$ of M on input w

Example 1: Implementing the reduction

$$\langle M,w\rangle \longrightarrow \fbox{?} \qquad \land M'\rangle$$

M' should be a Turing machine such that

 M' on input $\varepsilon = \mathit{M}$ on input w

Turing machine M': On input z

- 1. Simulate M on input w
- 2. If *M* accepts *w*, accept
- 3. If *M* rejects *w*, reject
 - + If $M \operatorname{accepts}\, w$, $M' \operatorname{accepts}\, \varepsilon$
 - If M rejects w, M' rejects ε
 - If M loops on w, M' loops on ε

Turing machine S: On input $\langle M, w \rangle$ where M is a TM

1. Construct the following TM M':

M' = a TM such that on input z,

Simulate M on input w and accept/reject according to M

2. Run R on input $\langle M'
angle$ and accept/reject according to R

Example 1: The formal proof

 $A'_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \}$ $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$

Suppose A'_{TM} is decidable by a TM RConsider the TM S:

TM S: On input $\langle M, w \rangle$ where M is a TM

1. Construct the following TM M':

M' = a TM such that on input z,

Simulate M on input w and accept/reject according to M

2. Run R on input $\langle M' \rangle$ and accept/reject according to R

Then S accepts $\langle M, w \rangle$ if and only if M accepts w So S decides A_{TM} , which is impossible $A''_{\rm TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input strings} \}$ Is $A''_{\rm TM}$ decidable? Why?

Undecidable!

Intuitive reason:

To know whether *M* accepts some strings seems to require simulating *M*

But then we need to know whether M halts

Let's justify this intuition

Eample 2: Figuring out the reduction

 $\it M'$ should be a Turing machine such that

 M^\prime accepts some strings if and only if M accepts input w

Task: Given $\langle M, w \rangle$, construct M' so that If M accepts w, then M' accepts some input If M does not accept w, then M' accepts no inputs

TM M': On input z

- 1. Simulate M on input w
- 2. If *M* accepts, accept
- 3. Otherwise, reject

Example 2: The formal proof

 $A_{\mathsf{TM}}^{\prime\prime} = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input} \}$ $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$

Suppose A''_{TM} is decidable by a TM R

Consider the TM S:

TM S: On input ⟨M, w⟩ where M is a TM 1. Construct the following TM M': M' = a TM such that on input z, Simulate M on input w and accept/reject according to M 2. Run R on input ⟨M'⟩ and accept/reject according to R

Then S accepts $\langle M, w \rangle$ if and only if M accepts w

So S decides A_{TM} , which is impossible

 $E_{\rm TM} = \{\langle M \rangle \mid M ~{\rm is ~a ~TM}~{\rm that ~accepts ~no ~input}\}$ Is $E_{\rm TM}$ decidable?

Undecidable! We will show:

If E_{TM} can be decided by some TM RThen A_{TM}'' can be decided by another TM S $A_{\text{TM}}'' = \{\langle M \rangle \mid M \text{ is a TM that accepts some input strings}\}$ $E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \}$ $A_{\text{TM}}'' = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input} \}$ Then $E_{\text{TM}} = \overline{A_{\text{TM}}''}$ (except ill-formatted strings, which we will ignore) Suppose E_{TM} can be decided by some TM RConsider the following Turing machine S:

TM S: On input $\langle M \rangle$ where M is a TM

- 1. Run R on input $\langle M \rangle$
- 2. If *R* accepts, reject
- 3. If R rejects, accept

Then S decides A''_{TM} , a contradiction

$$\label{eq:EQTM} \begin{split} \mathsf{EQ}_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \\ & \qquad \mathsf{Is } \mathsf{EQ}_{\mathsf{TM}} \text{ decidable} ? \end{split}$$

Undecidable!

We will show that $\rm EQ_{\rm TM}$ can be decided by some TM R then $E_{\rm TM}$ can be decided by another TM S

$$\begin{split} \mathsf{EQ}_{\mathsf{TM}} &= \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \\ E_{\mathsf{TM}} &= \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \} \end{split}$$

Given $\langle M \rangle$, we need to construct $\langle M_1, M_2 \rangle$ so that

- If M accepts no input, then M_1 and M_2 accept the same set of inputs
- If M accepts some input, then M_1 and M_2 do not accept the same set of inputs

Idea: Make $M_1 = M$

Make M_2 accept nothing

$$\begin{split} \mathsf{EQ}_{\mathsf{TM}} &= \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \\ E_{\mathsf{TM}} &= \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \} \end{split}$$

Suppose EQ_{TM} is decidable and *R* decides it Consider the following Turing machine *S*:

- TM S: On input $\langle M \rangle$ where M is a TM
 - 1. Construct a TM M_2 that rejects every input z
 - 2. Run R on input $\langle M, M_2 \rangle$ and accept/reject according to R

Then S accepts $\langle M \rangle$ if and only if M accepts no input So S decides E_{TM} which is impossible