
Undecidability and Reductions
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2020

Chinese University of Hong Kong

1/33

Undecidability

ATM = {⟨M,w⟩ | Turing machine M accepts input w}

Turing’s Theorem
The language ATM is undecidable

Note: a Turing machine M may take as input its own description ⟨M⟩

2/33

Turing’s Theorem: Proof sketch (in Python)

Suppose function H(M) correctly decides whether program M halts,
given its source code ⟨M⟩

>>> M = ” x = 1 ”
>>> p r i n t (H(M))
True

>>> M = ” ” ”
whi le True :
continue

” ” ”
>>> p r in t (H(M))
Fa lse

D checks whether itself halts using H and does the opposite

def D () :
i f H(D) :
loop_forever ()

Does D halt?

3/33

Formal proof of Turing’s Theorem

Proof by contradiction:

Suppose ATM is decidable, then some TM H decides ATM:

H⟨M,w⟩
accept if M accepts w

reject if M rejects or loops on w

Construct a new TM D (that uses H as a subroutine):

Turing machine D: On input ⟨M⟩
1. Run H on input ⟨M, ⟨M⟩⟩
2. Output the opposite of H: If H accepts, reject; if H rejects, accept

4/33

Formal proof of Turing’s Theorem

Proof by contradiction:

Suppose ATM is decidable, then some TM H decides ATM:

H⟨M,w⟩
accept if M accepts w

reject if M rejects or loops on w

Construct a new TM D (that uses H as a subroutine):

Turing machine D: On input ⟨M⟩
1. Run H on input ⟨M, ⟨M⟩⟩
2. Output the opposite of H: If H accepts, reject; if H rejects, accept

4/33

Formal proof of Turing’s Theorem

D⟨M⟩
accept if M rejects or loops on ⟨M⟩

reject if M accepts ⟨M⟩

What happens when M = D?

D⟨D⟩
accept if D rejects or loops on ⟨D⟩

reject if D accepts ⟨D⟩

H never loops indefinitely, neither does D

If D rejects ⟨D⟩, then D accepts ⟨D⟩

If D accepts ⟨D⟩, then D rejects ⟨D⟩

Contradiction! D cannot exist! H cannot exist!

5/33

Formal proof of Turing’s Theorem

D⟨M⟩
accept if M rejects or loops on ⟨M⟩

reject if M accepts ⟨M⟩

What happens when M = D?

D⟨D⟩
accept if D rejects ����or loops on ⟨D⟩

reject if D accepts ⟨D⟩

H never loops indefinitely, neither does D

If D rejects ⟨D⟩, then D accepts ⟨D⟩

If D accepts ⟨D⟩, then D rejects ⟨D⟩

Contradiction! D cannot exist! H cannot exist!

5/33

Proof of Turing’s theorem: conclusion

Proof by contradiction

Assume ATM is decidable

Then there are TM H, H′ and D

But D cannot exist!

Conclusion

The language ATM is undecidable

6/33

Diagonalization

all possible inputs w
ε 0 1 00 …

al
lp
os
si
bl
e

Tu
rin
g
m
ac
hi
ne
s M1 acc rej rej acc

M2 rej acc loop rej …
M3 rej loop rej rej
M4 acc rej acc loop

...

Write an infinite table for the pairs (M,w)

(Entries in this table are all made up for illustration)

7/33

Diagonalization

inputs w
⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ …

al
lp
os
si
bl
e

Tu
rin
g
m
ac
hi
ne
s M1 acc loop rej rej

M2 rej rej acc rej …
M3 loop acc acc acc
M4 acc acc loop acc

...

Only look at those w that describe Turing machines

8/33

Diagonalization

inputs w
⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ …

al
lp
os
si
bl
e

Tu
rin
g
m
ac
hi
ne
s M1 acc loop rej rej

M2 rej rej acc rej …
M3 loop acc acc acc
...

...
D rej acc rej rej
...

...

If ATM is decidable, then TM D is in the table

9/33

Diagonalization

inputs w
⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ …

al
lp
os
si
bl
e

Tu
rin
g
m
ac
hi
ne
s M1 acc loop rej rej

M2 rej rej acc rej …
M3 loop acc acc acc
...

...
D rej acc rej rej
...

...

D does the opposite of the diagonal entries

D on ⟨Mi⟩ = opposite of Mi on ⟨Mi⟩

D⟨D⟩
accept if D rejects or loops on ⟨D⟩

reject if D accepts ⟨D⟩

10/33

Diagonalization

inputs w
⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ … ⟨D⟩

al
lp
os
si
bl
e

Tu
rin
g
m
ac
hi
ne
s M1 acc loop rej rej loop

M2 rej rej acc rej … acc
M3 loop acc acc acc rej
...

...
D rej acc rej rej ?
...

...

We run into trouble when we look at (D, ⟨D⟩)

11/33

Unrecognizable languages

The language ATM is recognizable but not decidable

How about languages that are not recognizable?

ATM = {⟨M,w⟩ | M is a TM that does not accept w}
= {⟨M,w⟩ | M rejects or loops on input w}

Claim
The language ATM is not recognizable

12/33

Unrecognizable languages

Theorem
If L and L are both recognizable, then L is decidable

Proof of Claim from Theorem:

We know ATM is recognizable

if ATM were also, then ATM would be decidable

But Turing’s Theorem says ATM is not decidable

13/33

Unrecognizable languages

Theorem
If L and L are both recognizable, then L is decidable

Proof idea (flawed):

Let M = TM recognizing L, M′ = TM recognizing L

The following Turing machine N decides L:

Turing machine N: On input w
1. Simulate M on input w. If M accepts, accept
2. Simulate M′ on input w. If M′ accepts, reject

Problem: If M loops on w, we will never go to step 2

14/33

Unrecognizable languages

Theorem
If L and L are both recognizable, then L is decidable

Proof idea (flawed):

Let M = TM recognizing L, M′ = TM recognizing L

The following Turing machine N decides L:

Turing machine N: On input w
1. Simulate M on input w. If M accepts, accept
2. Simulate M′ on input w. If M′ accepts, reject

Problem: If M loops on w, we will never go to step 2

14/33

Unrecognizable languages

Theorem
If L and L are both recognizable, then L is decidable

Proof idea (2nd attempt):

Let M = TM recognizing L, M′ = TM recognizing L

The following Turing machine N decides L:

Turing machine N: On input w
For t = 0, 1, 2, 3, . . .
Simulate first t transitions of M on input w.
If M accepts, accept
Simulate first t transitions of M′ on input w.
If M′ accepts, reject

15/33

Reductions

Reductions

Problem AProblem B

Program RProgram S

reduces to solves

Reducing B to A
Transform program R that solves A into program S that solves B

If you can reduce B to A

Then you can solve problem B using subroutine R as a blackbox

Example from Lecture 16:

ADFA = {⟨D,w⟩ | D is a DFA that accepts input w}

ANFA = {⟨N,w⟩ | N is an NFA that accepts input w}

ANFA reduces to ADFA (by converting NFA into DFA)

16/33

Reductions in this course

Problem AProblem B

Program RProgram S

reduces to solvessolves

If language B reduces to language A, and B is undecidable
then A is also undecidable

Steps for showing a language A to be undecidable:

1. If some TM R decides A
2. Using R, build another TM S that decides B = ATM

But by Turing’s theorem, ATM is not decidable

17/33

Another undecidable language

HALTTM = {⟨M,w⟩ | M is a TM that halts on input w}

We’ll show:

HALTTM is an undecidable language

We will argue that

If HALTTM is decidable, then so is ATM

18/33

Undecidability of halting

If HALTTM can be decided, so can ATM

HALTTM = {⟨M,w⟩ | M is a TM that halts on input w}
ATM = {⟨M,w⟩ | M is a TM that accepts input w}

Suppose HALTTM is decidable by a Turing machine H

Then the following TM S decides ATM

Turing machine S: On input ⟨M,w⟩
Run H on input ⟨M,w⟩
If H rejects, reject
If H accepts, run the universal TM U on input ⟨M,w⟩
If U accepts, accept; else reject

19/33

Example 1

A′
TM = {⟨M⟩ | M is a TM that accepts input ε}

Is A′
TM decidable? Why?

Undecidable!

Intuitive reason:

To know whether M accepts ε seems to require simulating M

But then we need to know whether M halts

Let’s justify this intuition

20/33

Example 1

A′
TM = {⟨M⟩ | M is a TM that accepts input ε}

Is A′
TM decidable? Why?

Undecidable!

Intuitive reason:

To know whether M accepts ε seems to require simulating M

But then we need to know whether M halts

Let’s justify this intuition

20/33

Example 1: Figuring out the reduction

Suppose A′
TM can be decided by a TM R

R⟨M′⟩
accept if M′ accepts ε

reject otherwise

We want to build a TM S

? R⟨M,w⟩
accept if M accepts w

reject otherwise

⟨M′⟩
S

M′ should be a Turing machine such that

outcome of M′ on input ε = outcome of M on input w

21/33

Example 1: Implementing the reduction

?⟨M,w⟩ ⟨M′⟩

M′ should be a Turing machine such that

M′ on input ε = M on input w

Turing machine M′: On input z
1. Simulate M on input w
2. If M accepts w, accept
3. If M rejects w, reject

• If M accepts w, M′ accepts ε
• If M rejects w, M′ rejects ε
• If M loops on w, M′ loops on ε

22/33

? R⟨M,w⟩
accept if M accepts w

reject otherwise

⟨M′⟩
S

Turing machine S: On input ⟨M,w⟩ where M is a TM
1. Construct the following TM M′:

M′ = a TM such that on input z,
Simulate M on input w and accept/reject according to M

2. Run R on input ⟨M′⟩ and accept/reject according to R

23/33

Example 1: The formal proof

A′
TM = {⟨M⟩ | M is a TM that accepts input ε}

ATM = {⟨M,w⟩ | M is a TM that accepts input w}

Suppose A′
TM is decidable by a TM R

Consider the TM S:

TM S: On input ⟨M,w⟩ where M is a TM
1. Construct the following TM M′:

M′ = a TM such that on input z,
Simulate M on input w and accept/reject according to M

2. Run R on input ⟨M′⟩ and accept/reject according to R

Then S accepts ⟨M,w⟩ if and only if M accepts w
So S decides ATM, which is impossible

24/33

Example 2

A′′
TM = {⟨M⟩ | M is a TM that accepts some input strings}

Is A′′
TM decidable? Why?

Undecidable!

Intuitive reason:

To know whether M accepts some strings seems to require
simulating M

But then we need to know whether M halts

Let’s justify this intuition

25/33

Eample 2: Figuring out the reduction

Suppose A′′
TM can be decided by a TM R

R⟨M′⟩
accept if M′ accepts some strings

reject otherwise

We want to build a TM S

? R⟨M,w⟩
accept if M accepts w

reject otherwise

⟨M′⟩
S

M′ should be a Turing machine such that

M′ accepts some strings if and only if M accepts input w

26/33

Implementing the reduction

Task: Given ⟨M,w⟩, construct M′ so that

If M accepts w, then M′ accepts some input

If M does not accept w, then M′ accepts no inputs

TM M′: On input z
1. Simulate M on input w
2. If M accepts, accept
3. Otherwise, reject

27/33

Example 2: The formal proof

A′′
TM = {⟨M⟩ | M is a TM that accepts some input}

ATM = {⟨M,w⟩ | M is a TM that accepts input w}

Suppose A′′
TM is decidable by a TM R

Consider the TM S:

TM S: On input ⟨M,w⟩ where M is a TM
1. Construct the following TM M′:

M′ = a TM such that on input z,
Simulate M on input w and accept/reject according to M

2. Run R on input ⟨M′⟩ and accept/reject according to R

Then S accepts ⟨M,w⟩ if and only if M accepts w

So S decides ATM, which is impossible

28/33

Example 3

ETM = {⟨M⟩ | M is a TM that accepts no input}

Is ETM decidable?

Undecidable! We will show:

If ETM can be decided by some TM R

Then A′′
TM can be decided by another TM S

A′′
TM = {⟨M⟩ | M is a TM that accepts some input strings}

29/33

Example 3

ETM = {⟨M⟩ | M is a TM that accepts no input}
A′′
TM = {⟨M⟩ | M is a TM that accepts some input}

Then ETM = A′′
TM (except ill-formatted strings, which we will ignore)

Suppose ETM can be decided by some TM R

Consider the following Turing machine S:

TM S: On input ⟨M⟩ where M is a TM
1. Run R on input ⟨M⟩
2. If R accepts, reject
3. If R rejects, accept

Then S decides A′′
TM, a contradiction

30/33

Example 4

EQTM = {⟨M1,M2⟩ | M1 and M2 are TMs such that L(M1) = L(M2)}

Is EQTM decidable?

Undecidable!

We will show that EQTM can be decided by some TM R

then ETM can be decided by another TM S

31/33

Example 4: Setting up the reduction

EQTM = {⟨M1,M2⟩ | M1 and M2 are TMs such that L(M1) = L(M2)}
ETM = {⟨M⟩ | M is a TM that accepts no input}

Given ⟨M⟩, we need to construct ⟨M1,M2⟩ so that

• If M accepts no input, then M1 and M2 accept the same set of
inputs

• If M accepts some input, then M1 and M2 do not accept the
same set of inputs

Idea: Make M1 = M

Make M2 accept nothing

32/33

Example 4: The formal proof

EQTM = {⟨M1,M2⟩ | M1 and M2 are TMs such that L(M1) = L(M2)}
ETM = {⟨M⟩ | M is a TM that accepts no input}

Suppose EQTM is decidable and R decides it

Consider the following Turing machine S:

TM S: On input ⟨M⟩ where M is a TM
1. Construct a TM M2 that rejects every input z
2. Run R on input ⟨M,M2⟩ and accept/reject according to R

Then S accepts ⟨M⟩ if and only if M accepts no input

So S decides ETM which is impossible

33/33

	Reductions

