Pumping Lemma for Context-Free Languages

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2020

Chinese University of Hong Kong

$$\begin{split} L_1 &= \{ \mathbf{a}^n \mathbf{b}^n \mid n \geqslant 0 \} \\ L_2 &= \{ z \mid z \text{ has the same number of a's and b's} \} \\ L_3 &= \{ \mathbf{a}^n \mathbf{b}^n \mathbf{c}^n \mid n \geqslant 0 \} \\ L_4 &= \{ z z^R \mid z \in \{ \mathbf{a}, \mathbf{b} \}^* \} \\ L_5 &= \{ z z \mid z \in \{ \mathbf{a}, \mathbf{b} \}^* \} \end{split}$$

These languages are not regular

Are they context-free?

An attempt

$$L_3 = \{ a^n b^n c^n \mid n \geqslant 0 \}$$

Let's try to design a CFG or PDA

$$S \rightarrow aBc \mid \varepsilon$$
 read a / push x read b / pop x ???

Suppose we could construct some CFG $\it G$ for $\it L_{ m 3}$

e.g.
$$S \to CC \mid BC \mid \mathsf{a}$$

$$B \to CS \mid \mathsf{b}$$

$$C \to SB \mid \mathsf{c}$$

How does a long derivation look like?

$$S \Rightarrow CC$$

$$\Rightarrow SBC$$

$$\Rightarrow SCSC$$

$$\Rightarrow SSBSC$$

$$\Rightarrow SSBBCC$$

$$\Rightarrow aSBBCC$$

$$\Rightarrow aabBCC$$

$$\Rightarrow aabbCC$$

$$\Rightarrow aabbcC$$

$$\Rightarrow aabbcC$$

Repetition in long derivations

If a derivation is long enough, some variable must appear twice on the same root-to-leave path in a parse tree

$$S \Rightarrow CC$$

$$\Rightarrow SBC$$

$$\Rightarrow SCSC$$

$$\Rightarrow SSBSC$$

$$\Rightarrow SSBBCC$$

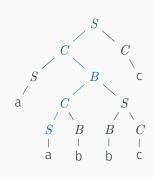
$$\Rightarrow aSBBCC$$

$$\Rightarrow aabBCC$$

$$\Rightarrow aabbCC$$

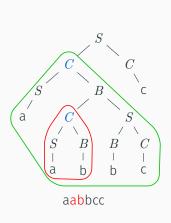
$$\Rightarrow aabbcC$$

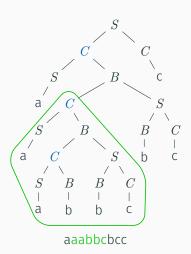
$$\Rightarrow aabbcC$$



Pumping example

Then we can "cut and paste" part of parse tree



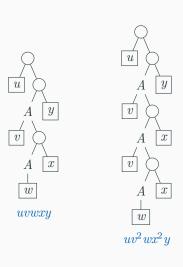


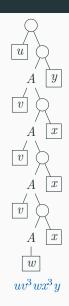
Pumping example

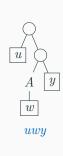
We can repeat this many times
$$aabbcc \Rightarrow aaabbcbccc \Rightarrow aaaabbcbcbccc \Rightarrow \dots$$
 $\Rightarrow (a)^i ab(bc)^i c$

Every sufficiently large derivation will have a middle part that can be repeated indefinitely

Pumping in general







$$L_3 = \{ a^n b^n c^n \mid n \geqslant 0 \}$$

If L_3 has a context-free grammar G, then for any sufficiently long $s \in L(G)$

s can be split into s=uvwxy such that $L(\mathit{G})$ also contains uv^2wx^2y , uv^3wx^3y , ...

What happens if $s = a^m b^m c^m$

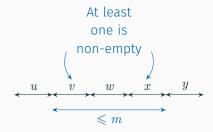
No matter how it is split, $uv^2wx^2y \notin L_3$

Pumping lemma for context-free languages

For every context-free language ${\it L}$

There exists a number m such that for every long string s in L $(|s| \ge m)$, we can write s = uvwxy where

- 1. $|vwx| \leqslant m$
- 2. $|vx| \ge 1$
- 3. For every $i\geqslant 0$, the string uv^iwx^iy is in L



Pumping lemma for context-free languages

To prove L is not context-free, it is enough to show that

For every m there is a long string $s \in L$, $|s| \geqslant m$, such that for every way of writing s = uvwxy where

- 1. $|vwx| \leqslant m$
- 2. $|vx| \ge 1$

there is $i \geqslant 0$ such that $uv^i wx^i y$ is not in L

Using the pumping lemma

$$L_3 = \{ a^n b^n c^n \mid n \geqslant 0 \}$$

- 1. for every m
- 2. there is $s = a^m b^m c^m$ (at least m symbols)
- 3. no matter how the pumping lemma splits s into uvwxy $(|vwx| \leq m, |vx| \geq 1)$
- 4. $uv^2wx^2y \notin L_3$ (but why?)

Using the pumping lemma

Case 1: v or x contains two kinds of symbols

Then $uv^2wx^2y \notin L_3$ because the pattern is wrong

Case 2: v and x both contain (at most) one kind of symbol

aaa
$$\underbrace{a}_{v}$$
 b \underbrace{bb}_{x} bcccc

Then uv^2wx^2y does not have the same number of a's, b's and c's

Conclusion: $uv^2wx^2y \notin L_3$

Which is context-free?

$$L_1 = \{\mathbf{a}^n \mathbf{b}^n \mid n \geqslant 0\} \quad \checkmark$$

$$L_2 = \{z \mid z \text{ has the same number of a's and b's} \} \quad \checkmark$$

$$L_3 = \{\mathbf{a}^n \mathbf{b}^n \mathbf{c}^n \mid n \geqslant 0\} \quad \mathbf{X}$$

$$L_4 = \{zz^R \mid z \in \{\mathbf{a}, \mathbf{b}\}^*\} \quad \checkmark$$

$$L_5 = \{zz \mid z \in \{\mathbf{a}, \mathbf{b}\}^*\}$$

$$L_5 = \{ zz \mid z \in \{\mathsf{a},\mathsf{b}\}^* \}$$

- 1. for every m
- 2. there is $s = a^m b a^m b$ (at least m symbols)
- 3. no matter how the pumping lemma splits s into uvwxy $(|vwx| \leqslant m, |vx| \geqslant 1)$
- 4. Is $uv^2wx^2y \notin L_5$?

$$L_5 = \{ zz \mid z \in \{\mathsf{a},\mathsf{b}\}^* \}$$

- 1. for every m
- 2. there is $s = a^m b a^m b$ (at least m symbols)
- 3. no matter how the pumping lemma splits s into uvwxy $(|vwx| \leqslant m, |vx| \geqslant 1)$
- 4. Is $uv^2wx^2y \notin L_5$?

$$L_5 = \{ zz \mid z \in \{a, b\}^* \}$$

- 1. for every m
- 2. there is $s = a^m b^m a^m b^m$ (at least m symbols)
- 3. no matter how the pumping lemma splits s into uvwxy $(|vwx| \leqslant m, |vx| \geqslant 1)$
- 4. Is $uv^iwx^iy \notin L_5$ for some i?

Recall that $|vwx| \leq m$

Three cases

- Case 1 aaa aabbb bbaaaaabbbbb vwx is in the first half of $a^mb^ma^mb^m$
- Case 2 aaaaaabb bbbaa aaabbbbb vwx is in the middle part of $a^mb^ma^mb^m$
- Case 3 aaaaabbbbbbaaa aabbb bbvwx is in the second half of $a^mb^ma^mb^m$

Apply pumping lemma with i=0

- Case 1 aaa aabbb bbaaaaaabbbbb $uwy \text{ becomes a}^j \textbf{b}^k \textbf{a}^m \textbf{b}^m \ (j < m \text{ or } k < m)$
- Case 2 aaaaabb \underbrace{bbbaa}_{vwx} aaabbbbbuwy becomes $a^mb^ja^kb^m$ (j < m or k < m)
- Case 3 aaaaabbbbbaaa \underbrace{aabbb}_{vwx} bb $uwy \text{ becomes a}^m b^m a^j b^k \ (j < m \text{ or } k < m)$

Not of the form zz

This covers all cases, so L_5 is not context-free