CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2020

Chinese University of Hong Kong

Write a CFG for the language (0 + 1)*111

 $\begin{array}{l} S \rightarrow \ U 1 1 1 \\ U \rightarrow 0 \ U \mid 1 \ U \mid \varepsilon \end{array}$

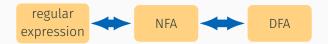
Can you do so for every regular language?

Write a CFG for the language (0 + 1)*111

 $\begin{array}{l} S \rightarrow \ U 1 1 1 \\ U \rightarrow 0 \ U \mid 1 \ U \mid \varepsilon \end{array}$

Can you do so for every regular language?

Every regular language is context-free



regular expression	\Rightarrow CFG
Ø	grammar with no rules
ε	$S \to \varepsilon$
x (alphabet symbol)	$S \to X$
$E_1 + E_2$	$S \to S_1 \mid S_2$
$E_1 E_2$	$S \rightarrow S_1 S_2$
E_1^*	$S \to SS_1 \mid \varepsilon$

 \boldsymbol{S} becomes the new start variable

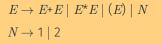
Is every context-free language regular?

Is every context-free language regular?

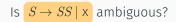
 $S \to 0S1 \mid \varepsilon \qquad L = \{0^n 1^n \mid n \geqslant 0\}$ Is context-free but not regular

Ambiguity

Ambiguity

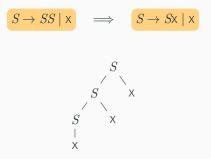


A CFG is ambiguous if some string has more than one parse tree



Is $S \rightarrow SS \mid x$ ambiguous?

Two parse trees for xxx



Sometimes we can rewrite the grammar to remove ambiguity

$$E \to E + E \mid E^*E \mid (E) \mid N$$
$$N \to 1 \mid 2$$

+ and * have the same precedence! Decompose expression into terms and factors

 $E \rightarrow E + E \mid E^*E \mid (E) \mid N$ $N \rightarrow 1 \mid 2$

An expression is a sum of one or more terms $E \rightarrow \ T \mid E^{+}T$

Each term is a product of one or more factors $T \to F \mid \ T^*F$

Each factor is a parenthesized expression or a number $F \rightarrow (E) \mid 1 \mid 2$

$$E \rightarrow T \mid E + T$$
$$T \rightarrow F \mid T^*F$$
$$F \rightarrow (E) \mid 1 \mid 2$$

Parse tree for 2+(1+1+2*2)+1

$$\begin{array}{c} & E \\ & F \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & F \\ & 1 \\ & 2 \\ & 2 \\ & 5 \\ & 7 \\$$

Disambiguation is not always possible because

- 1. There exists inherently ambiguous languages i.e. ambiguous no matter how you rewrite the grammar
- 2. There is no general procedure for disambiguation

Disambiguation is not always possible because

- 1. There exists inherently ambiguous languages i.e. ambiguous no matter how you rewrite the grammar
- 2. There is no general procedure for disambiguation

In programming languages, ambiguity comes from the precedence rules, and we can resolve like in the example

In English, ambiguity is sometimes a problem:

I look at the dog with one eye

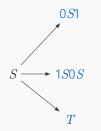
$S \rightarrow 0S1 \mid 1S0S \mid T$ input: 0011 $T \rightarrow S \mid \varepsilon$

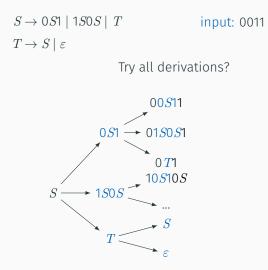
Is 0011 $\in L$?

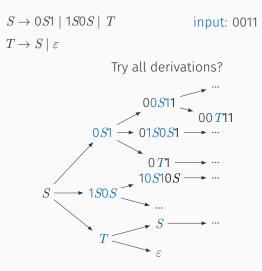
If so, how to build a parse tree with a program?

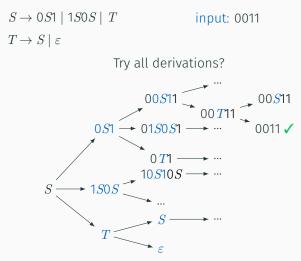
 $S \rightarrow 0S1 \mid 1S0S \mid T$ input: 0011 $T \rightarrow S \mid \varepsilon$

Try all derivations?









This is (part of) the tree of all derivations, not the parse tree

- 1. Trying all derivations may take too long
- 2. If input is not in the language, parsing will never stop

Let's tackle the 2nd problem

$$\begin{split} S &\to 0S1 \mid 1S0S \mid \ T \\ T &\to \mathsf{S} \mid \varepsilon \end{split}$$

Idea: Stop when |derived string| > |input|
$$\begin{split} S &\to 0S1 \mid 1S0S \mid T & \qquad \text{Idea: Stop when} \\ T &\to S \mid \varepsilon & \qquad |\text{derived string}| > |\text{input}| \end{split}$$

Problems:

 $S \Rightarrow 0S1 \Rightarrow 0T1 \Rightarrow 01$

Derived string may shrink because of " ε -productions"

 $\begin{array}{c|c} S \rightarrow 0S1 \mid 1S0S \mid T & |dea: \text{ Stop when} \\ T \rightarrow S \mid \varepsilon & |derived string| > |input| \\ \end{array}$ Problems: $S \Rightarrow 0S1 \Rightarrow 0T1 \Rightarrow 01 & S \Rightarrow T \Rightarrow S \Rightarrow T \Rightarrow \dots$ Derived string may shrink
because of " ε -productions" & Derviation may loop
because of "unit
productions"

Remove ε and unit productions

Note: we will remove all $A \to \varepsilon$ rules, except for start variable A

Goal: remove all $A \to \varepsilon$ rules for every non-start variable A

(1) If S is the start variable and the rule $S \rightarrow \varepsilon$ exists

Add a new start variable T Add the rule $T \rightarrow S$

$$S \rightarrow ACD$$

$$A \rightarrow a$$

$$B \rightarrow \varepsilon$$

$$C \rightarrow ED \mid \varepsilon$$

$$D \rightarrow BC \mid b$$

$$E \rightarrow b$$

(2) For every rule $A \to \varepsilon$ where A isn't the (new) start variable

- 1. Remove the rule $A \to \varepsilon$
- 2. If you see $B \to \alpha A \beta$ Add a new rule $B \to \alpha \beta$

Goal: remove all $A \to \varepsilon$ rules for every non-start variable A

(1) If S is the start variable and the rule $S \rightarrow \varepsilon$ exists

Add a new start variable T Add the rule $T \rightarrow S$

(2) For every rule $A \to \varepsilon$ where A isn't the (new) start variable

- 1. Remove the rule $A \rightarrow \varepsilon$
- 2. If you see $B \rightarrow \alpha A \beta$ Add a new rule $B \rightarrow \alpha \beta$

Removing $B \to \varepsilon$

Goal: remove all $A \to \varepsilon$ rules for every non-start variable A

(1) If S is the start variable and the rule $S \rightarrow \varepsilon$ exists

Add a new start variable T Add the rule $T \rightarrow S$

(2) For every rule $A \to \varepsilon$ where A isn't the (new) start variable

- 1. Remove the rule $A \rightarrow \varepsilon$
- 2. If you see $B \to \alpha A \beta$ Add a new rule $B \to \alpha \beta$

Removing $C \rightarrow \varepsilon$

Goal: remove all $A \to \varepsilon$ rules for every non-start variable A

(1) If S is the start variable and the rule $S \rightarrow \varepsilon$ exists

Add a new start variable T Add the rule $T \rightarrow S$

$$S \rightarrow ACD$$

$$A \rightarrow a$$

$$B \rightarrow \varepsilon$$

$$C \rightarrow ED \mid \not$$

$$D \rightarrow BC \mid b$$

$$E \rightarrow b$$

(2) For every rule $A \to \varepsilon$ where A isn't the (new) start variable

- 1. Remove the rule $A \to \varepsilon$
- 2. If you see $B \to \alpha A \beta$ Add a new rule $B \to \alpha \beta$

 $\begin{array}{c} D \to C \mid B \\ S \not \to AD \\ D \to \varepsilon \end{array}$

Removing $C \rightarrow \varepsilon$

Goal: remove all $A \to \varepsilon$ rules for every non-start variable A

(1) If S is the start variable and the rule $S \rightarrow \varepsilon$ exists

Add a new start variable T Add the rule $T \rightarrow S$

(2) For every rule $A \to \varepsilon$ where A isn't the (new) start variable

- 1. Remove the rule $A \rightarrow \varepsilon$
- 2. If you see $B \to \alpha A \beta$ Add a new rule $B \to \alpha \beta$

Removing $D \to \varepsilon$

Goal: remove all $A \to \varepsilon$ rules for every non-start variable A

(1) If S is the start variable and the rule $S \rightarrow \varepsilon$ exists

Add a new start variable T Add the rule $T \rightarrow S$

$$S \rightarrow ACD$$

$$A \rightarrow a$$

$$B \rightarrow \varepsilon$$

$$C \rightarrow ED \mid \not$$

$$D \rightarrow BC \mid b$$

$$E \rightarrow b$$

(2) For every rule $A \to \varepsilon$ where A isn't the (new) start variable

- 1. Remove the rule $A \to \varepsilon$
- 2. If you see $B \to \alpha A \beta$ Add a new rule $B \to \alpha \beta$

```
\begin{array}{l} D \rightarrow C \mid B \\ S \rightarrow AD \mid AC \\ D \rightarrow \varepsilon \\ C \rightarrow E \\ S \rightarrow A \end{array}
```

Removing $D \to \varepsilon$

(2) For every $A \to \varepsilon$ rule where A is not the start variable

- 1. Remove the rule $A \to \varepsilon$
- 2. If you see $B \to \alpha A \beta$ Add a new rule $B \to \alpha \beta$

Do 2. every time A appears

 $\begin{array}{c} B \rightarrow \alpha A\beta A\gamma \text{ yields} \\ B \rightarrow \alpha \beta A\gamma \quad B \rightarrow \alpha A\beta\gamma \\ B \rightarrow \alpha \beta\gamma \end{array}$

(2) For every $A \rightarrow \varepsilon$ rule where A is not the start variable

- 1. Remove the rule $A \rightarrow \varepsilon$
- 2. If you see $B \rightarrow \alpha A \beta$ Add a new rule $B \rightarrow \alpha \beta$

Do 2. every time A appears

 $\begin{array}{c} B \rightarrow \alpha A\beta A\gamma \text{ yields} \\ B \rightarrow \alpha \beta A\gamma \quad B \rightarrow \alpha A\beta\gamma \\ B \rightarrow \alpha \beta\gamma \end{array}$

 $B \to A$ becomes $B \to \varepsilon$

If $B \to \varepsilon$ was removed earlier, don't add it back

A unit production is a production of the form

 $A \to B$

Grammar:

Unit production graph:

$$\begin{split} S &\to 0S1 \mid 1S0S \mid T \\ T &\to S \mid R \mid \varepsilon \\ R &\to 0SR \end{split}$$

Removing unit productions

① If there is a cycle of unit productions

 $A \to B \to \dots \to C \to A$

delete it and replace everything with *A* (any variable in the cycle)

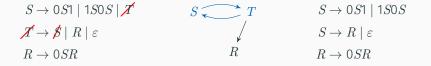
 $S \rightarrow 0S1 \mid 1S0S \mid T$ $T \rightarrow S \mid R \mid \varepsilon$ $R \rightarrow 0SR$

$$S \longrightarrow T$$

 R

 $A \to B \to \dots \to C \to A$

delete it and replace everything with *A* (any variable in the cycle)



Replace T by S

(2) replace any chain

 $A \to B \to \dots \to C \to \alpha$

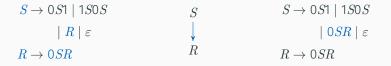
by $A \to \alpha$, $B \to \alpha$, \cdots , $C \to \alpha$

 $S \to 0S1 \mid 1S0S \qquad S \\ \mid R \mid \varepsilon \qquad \downarrow \\ R \to 0SR \qquad R$

(2) replace any chain

 $A \to B \to \dots \to C \to \alpha$

by $A \to \alpha$, $B \to \alpha$, \cdots , $C \to \alpha$



Replace $S \rightarrow R \rightarrow 0SR$ by $S \rightarrow 0SR$, $R \rightarrow 0SR$

Problems:

- 1. Trying all derivations may take too long
- 2. If input is not in the language, parsing will never stop \checkmark

Solution to problem 2:

- 1. Eliminate ε productions
- 2. Eliminate unit productions

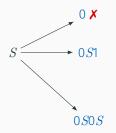
Try all possible derivations but stop parsing when |derived string| > |input|

Example

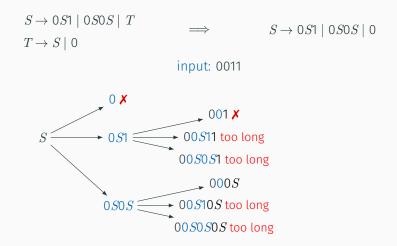
$$\begin{split} S &\to 0S1 \mid 0S0S \mid \ T \\ T &\to S \mid 0 \end{split}$$

 $S \rightarrow 0S1 \mid 0S0S \mid 0$

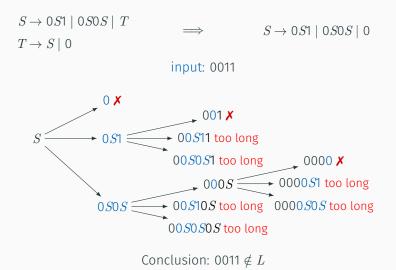
input: 0011



Example



Example



- 1. Trying all derivations may take too long
- 2. If input is not in the language, parsing will never stop

A faster way to parse:

Cocke–Younger–Kasami algorithm

To use it we must perprocess the CFG as follows:

- 1. Eliminate ε productions
- 2. Eliminate unit productions
- 3. Convert CFG to Chomsky Normal Form

Chomsky Normal Form

A CFG is in Chomsky Normal Form if every production is of one of the following

 $\cdot \ A \to BC$

(exactly two non-start variables on the right)

 $\cdot \ A \to \mathsf{x}$

(exactly one terminal on the right)

 $\cdot \ S \to \varepsilon$

(ε -production only allowed for start variable)

where

A : variable

- *B* and *C*: non-start variables
- x : terminal
- S: start variable

Noam Chomsky

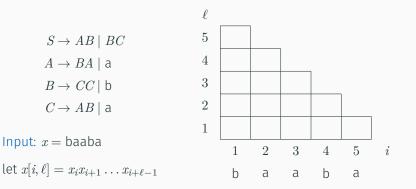
 $A \rightarrow BcDE$

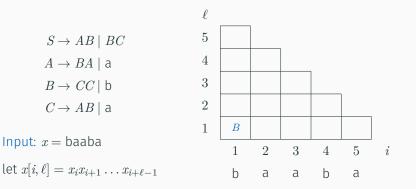
replace $C \rightarrow c$ terminals with new variables

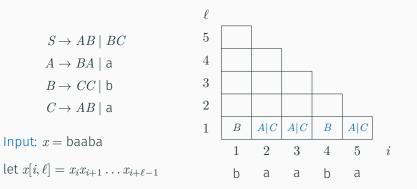
 $\implies A \rightarrow BCDE$

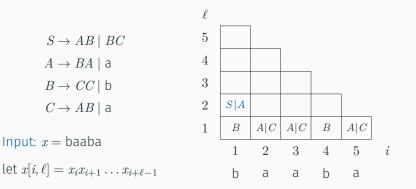
with new variables

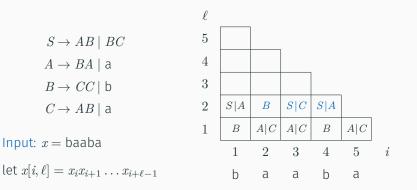
 $\implies A \rightarrow BX$ break up $X \rightarrow CY$ sequences $Y \rightarrow DE$ $C \rightarrow c$







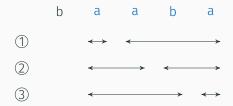




Computing $T[i, \ell]$ for $\ell \ge 2$

Example: to compute T[2, 4]

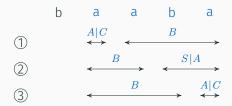
Try all possible ways to split x[2,4] into two substrings



Computing $T[i, \ell]$ for $\ell \ge 2$

Example: to compute T[2, 4]

Try all possible ways to split x[2,4] into two substrings

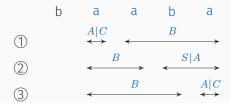


Look up entries regarding shorter substrings previously computed

Computing $T[i, \ell]$ for $\ell \ge 2$

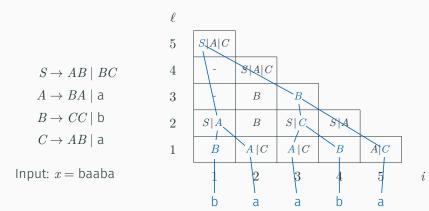
Example: to compute T[2, 4]

Try all possible ways to split x[2,4] into two substrings



Look up entries regarding shorter substrings previously computed

 $S \to AB \mid BC$ $A \to BA \mid a$ $B \to CC \mid b$ $C \to AB \mid a$



Get parse tree by tracing back derivations