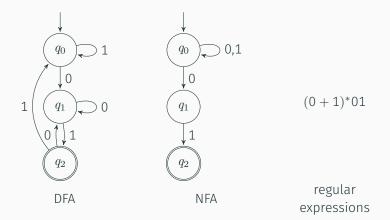
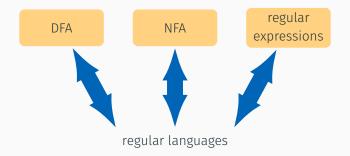
Equivalence of DFA and Regular Expressions

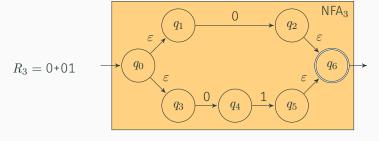

CSCI 3130 Formal Languages and Automata Theory

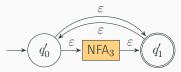
Siu On CHAN Fall 2020


Chinese University of Hong Kong

Three ways of doing it

$L = \{x \in \Sigma^* \mid x \text{ ends in 01}\} \qquad \Sigma = \{0, 1\}$

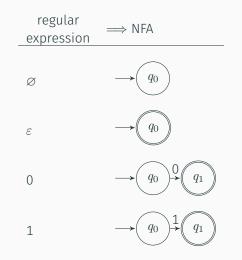

They are equally powerful

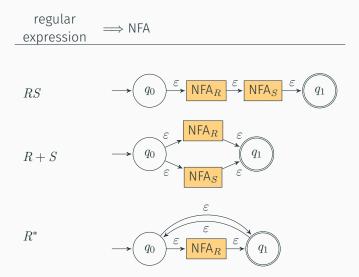


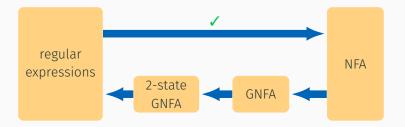
Examples: regular expression \rightarrow NFA

$$R_1 = 0 \qquad \longrightarrow \qquad \begin{array}{c} 0 \\ q_0 \\ \end{array} \\ \begin{array}{c} 0 \\ q_1 \\ \end{array} \\ \begin{array}{c} q_1 \\ \end{array} \\ \end{array}$$

Examples: regular expression \rightarrow NFA

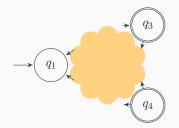

$$R_4 = (0+01)^*$$

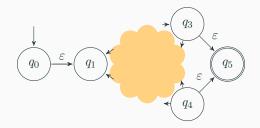

In general, how do we convert a regular expression to an NFA?

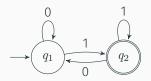

A regular expression over $\boldsymbol{\Sigma}$ is an expression formed by the following rules

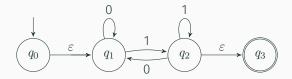
- The symbols \varnothing and ε are regular expressions
- Every symbol in Σ is a regular expression
 - + If $\Sigma = \{0, 1\}$, then 0 and 1 are both regular expressions
- If R asd S are regular expressions, so are R + S, RS and R^*

General method when $\Sigma = \{0, 1\}$



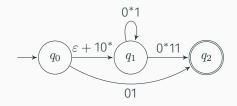

First we simplify the NFA so that

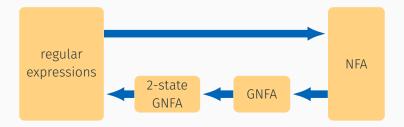

- It has exactly one accepting state
- No arrows come into the start state
- \cdot No arrows go out of the accepting state



First we simplify the NFA so that

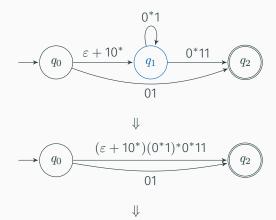
- It has exactly one accepting state
- No arrows come into the start state
- \cdot No arrows go out of the accepting state

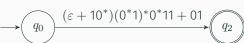


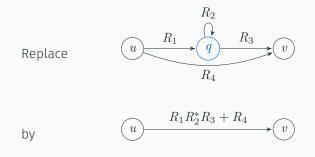


- \cdot It has exactly one accepting state \checkmark
- No arrows come into the start state \checkmark
- $\cdot\,$ No arrows go out of the accepting state $\checkmark\,$

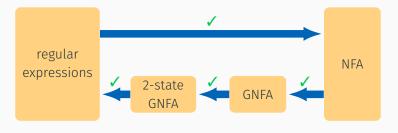
A generalized NFA is an NFA whose transitions are labeled by regular expressions, like



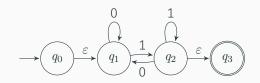

GNFA state elimination

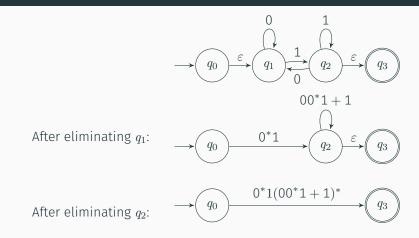

We will eliminate every state but the start and accepting states

State elimination

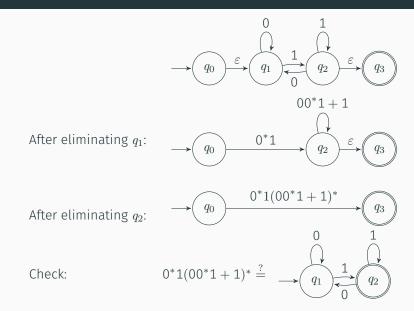


To eliminate state q, for every pair of states (u, v) such that $u \rightarrow q \rightarrow v$

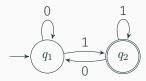

Remember to do this even when u = v


A 2-state GNFA is the same as a regular expression *R*

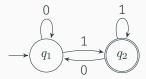
Conversion example



After eliminating q_1 :


Conversion example

Conversion example



Check your answer!

All strings ending in 1 $(0+1)^*1$

Check your answer!

All strings ending in 1 $(0+1)^*1$

$$0^*1(00^*1+1)^*$$

 $= 0^* 1(0^* 1)^*$

Always ends in 1

Does every string ending in 1 have this form? Yes