NP-completeness

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2015

What we say "INDEPENDENT-SET is at least as hard as CLIQUE" What does that mean?

We mean

If CLIQUE cannot be decided by a polynomial-time Turing machine, then neither does INDEPENDENT-SET

If INDEPENDENT-SET can be decided by a polynomial-time Turing machine, then so does CLIQUE

Similar to the reductions we saw in the past 4-5 lectures, but with the additional restriction of polynomial-time

CLIQUE = $\{\langle G, k \rangle \mid G$ is a graph having a clique of *k* vertices } INDEPENDENT-SET $= \{ \langle G, k \rangle \mid G$ is a graph having an independent set of *k* vertices}

Theorem

If INDEPENDENT-SET has a polynomial-time Turing machine, so does CLIQUE

If INDEPENDENT-SET has a polynomial-time Turing machine, so does CLIQUE

Proof

Suppose INDEPENDENT-SET is decided by a poly-time TM *A*

We want to build a TM *S* that uses *A* to solve CLIQUE

Reducing CLIQUE to INDEPENDENT-SET

We look for a polynomial-time Turing machine *R* that turns the question

"Does *G* have a clique of size *k*?"

into

"Does G' have an independent set (IS) of size k' ?"

Reducing CLIQUE to INDEPENDENT-SET

On input $\langle G, k \rangle$ Construct G' by flipping all edges of G Set $k' = k$ Output $\langle G', k' \rangle$

$$
\langle G, k \rangle \rightarrow \boxed{R} \rightarrow \langle G', k' \rangle
$$

Cliques in $G \leftrightarrow$ Independent sets in G'

- If G has a clique of size k then G' has an independent set of size k
- If G does not have a clique of size k then G' does not have an independent set of size k

We showed that

If INDEPENDENT-SET is decidable by a polynomial-time Turing machine, so is CLIQUE

by converting any Turing machine for INDEPENDENT-SET into one for CLIQUE

To do this, we came up with a reduction that transforms instances of CLIQUE into ones of INDEPENDENT-SET

Language L polynomial-time reduces to L' if

there exists a polynomial-time Turing machine *R* that takes an instance *x* of L into an instance y of L' such that

 $x \in L$ if and only if $y \in L'$

The meaning of reductions

 L reduces to L' means L is no harder than L' If we can solve L' , then we can also solve L

Pay attention to the direction of reduction "A is no harder than B" and "B is no harder than A" have completely different meanings It is possible that L reduces to L' and L' reduces to L That means L and L' are as hard as each other For example, IS and CLIQUE reduce to each other

Boolean formula satisfiability

A boolean formula is an expression made up of variables, ANDs, ORs, and negations, like

$$
\varphi = (x_1 \lor \overline{x}_2) \land (x_2 \lor \overline{x}_3 \lor x_4) \land (\overline{x}_1)
$$

Task: Assign TRUE/FALSE values to variables so that the formula evaluates to true

e.g. $x_1 = F$ $x_2 = F$ $x_3 = T$ $x_4 = T$

Given a formula, decide whether such an assignment exist

SAT = $\{\langle \varphi \rangle | \varphi$ is a satisfiable Boolean formula} 3SAT = $\{\langle \varphi \rangle | \varphi$ is a satisfiable Boolean formula conjunctive normal form with 3 literals per clause}

literal: x_i or \overline{x}_i Conjuctive Normal Form (CNF): AND of ORs of literals 3CNF: CNF with 3 literals per clause (repetitions allowed)

$$
(\underbrace{\overline{x}_1 \vee x_2 \vee \overline{x}_2}) \wedge (\underbrace{\overline{x}_2 \vee x_3 \vee x_4})
$$
literal

3SAT is in NP

$$
\varphi = (x_1 \vee \overline{x}_2) \wedge (x_2 \vee \overline{x}_3 \vee x_4) \wedge (\overline{x}_1)
$$

Finding a solution: Try all possible assignments FFFF FTFF TFFF TTFF FFFT FTFT TFFT TTFT FFTF FTTF TFTF TTTF FFTT FTTT TFTT TTTT

For n variables, there are 2^n possible assignments

Takes exponential time

Verifying a solution: substitute

$$
\mathit{x}_{1}=\mathsf{F} \quad \mathit{x}_{2}=\mathsf{F}
$$

$$
\mathit{x}_3 = \texttt{T} \quad \mathit{x}_4 = \texttt{T}
$$

evaluating the formula

$$
\varphi = (F \vee T) \wedge (F \vee F \vee T) \wedge (T)
$$

can be done in linear time

Cook–Levin theorem

Every $L \in \mathsf{NP}$ reduces to SAT

SAT $=\{\langle \varphi \rangle | \varphi$ is a satisfiable Boolean formula} e.g. $\varphi = (x_1 \vee \overline{x}_2) \wedge (x_2 \vee \overline{x}_3 \vee x_4) \wedge (\overline{x}_1)$

Every problem in NP is no harder than SAT

But SAT itself is in NP, so SAT must be the "hardest problem" in NP

If SAT \in P, then P = NP

NP-completeness

A language *L* is NP-hard if:

For every *N* in NP, *N* reduces to *L*

A language *L* is NP-complete if *L* is in NP and *L* is NP-hard

Cook–Levin theorem

SAT is NP-complete

Our picture of NP

 $A \rightarrow B$: *A* reduces to *B*

In practice, most NP problems are either in P (easy) or NP-complete (probably hard)

Interpretation of Cook–Levin theorem

Optimistic:

If we manage to solve SAT, then we can also solve CLIQUE and many other

Pessimistic:

Since we believe P \neq NP, it is unlikely that we will ever have a fast algorithm for SAT

Ubiquity of NP-complete problems

We saw a few examples of NP-complete problems, but there are many more

Surprisingly, most computational problems are either in P or NP-complete

By now thousands of problems have been identified as NP-complete

Reducing IS to VC

$$
\langle G, k \rangle \longrightarrow R \longrightarrow \langle G', k' \rangle
$$

G has an IS of size $k \leftrightarrow G'$ has a VC of size k'

Example

Independent sets:

 \emptyset , {1}, {2}, {3}, {4}, ${1, 2}, {1, 3}$

vertex covers:

$$
\begin{array}{l} \{2,4\},\{3,4\},\\ \{1,2,3\},\{1,2,4\},\\ \{1,3,4\},\{2,3,4\},\\ \{1,2,3,4\} \end{array}
$$

Reducing IS to VC

Claim

S is an independent set if and only if \overline{S} is a vertex cover

Proof: *S* is an independent set $\mathbb{\hat{I}}$ no edge has both endpoints in *S* $\mathbb \mathbb{I}$ every edge has an endpoint in \overline{S} $\mathbb{\hat{I}}$ \overline{S} is a vertex cover

Reducing IS to VC

$$
\langle G, k \rangle \to \boxed{R} \to \langle G', k' \rangle
$$

R: On input $\langle G, k \rangle$ Output $\langle G, n - k \rangle$

G has an IS of size $k \leftrightarrow G$ has a VC of size $n - k$

Overall sequence of reductions:

$$
\mathsf{SAT} \to \mathsf{3SAT} \to \mathsf{Clique} \xrightarrow{\checkmark} \mathsf{IS} \xrightarrow{\checkmark} \mathsf{VC}
$$

3SAT = $\{\varphi \mid \varphi \}$ is a satisfiable Boolean formula in 3CNF} CLIQUE = $\{ \langle G, k \rangle \mid G$ is a graph having a clique of *k* vertices}

$$
\mathsf{3CNF}\ \mathsf{formula}\ \varphi\to\begin{array}{|c|c|}\hline R&\to\langle\,G,k\,\rangle\end{array}
$$

 φ is satisfiable \longleftrightarrow *G* has a clique of size *k*

Example: $\varphi = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_2) \wedge (\overline{x}_1 \vee x_2 \vee x_3)$

One vertex for each literal occurrence

One edge for each consistent pair

$$
\mathsf{3CNF}\ \mathsf{formula}\ \varphi\to\begin{array}{|c|}\hline R\end{array}\Longrightarrow\langle\,G,k\rangle
$$

R: On input φ , where φ is a 3CNF formula with *m* clauses Construct the following graph *G*: *G* has 3*m* vertices, divided into *m* groups One for each literal occurrence in φ If vertices *u* and *v* are in different groups and consistent Add an edge (*u*, *v*) Output $\langle G, m \rangle$

$$
\mathsf{3CNF}\,\mathsf{formula}\,\varphi\to\begin{array}{|c|}\hline R\\\hline R\\\hline\end{array}\mapsto\langle\,G,k\rangle
$$

 φ is satisfiable \longleftrightarrow *G* hasa clique of size *m*

$$
\varphi=(\underset{\scriptscriptstyle{\top}}{_{\scriptscriptstyle{\Gamma}}} \vee \underset{\scriptscriptstyle{\top}}{_{\scriptscriptstyle{\Gamma}}} \vee \underset{\scriptscriptstyle{\Gamma}}{_{\scriptscriptstyle{\Gamma}}} \vee \underset{\scriptscriptstyle{\Gamma}}{_{\scriptscriptstyle{\Gamma}}})\wedge (\overline{x}_1\vee \overline{x}_2\vee \overline{x}_2)\wedge (\overline{x}_1\vee x_2\vee x_3)
$$

Reducing 3SAT to CLIQUE: Summary

$$
\mathsf{3CNF}\,\mathsf{formula}\,\varphi\to\begin{array}{|c|}\hline R\\\hline R\\\hline\end{array}\mapsto\langle\,G,k\rangle
$$

Every satisfying assignment of φ gives a clique of size m in G

Conversely, every clique of size *m* in *G* gives a satisfying assignment of φ

Overall sequence of reductions:

$$
\text{SAT} \rightarrow \text{3SAT} \xrightarrow{\checkmark} \text{CLIQUE} \xrightarrow{\checkmark} \text{IS} \xrightarrow{\checkmark} \text{VC}
$$

SAT and 3SAT

SAT = $\{\varphi \mid \varphi$ is a satisfiable Boolean formula} e.g. $((x_1 \vee x_2) \wedge \overline{(x_1 \vee x_2)}) \vee \overline{((x_1 \vee (x_2 \wedge x_3)) \wedge \overline{x_3})}$ 3SAT $=\{ \varphi' \mid \varphi'$ is a satisfiable 3CNF formula in 3CNF $\}$ e.g. $(x_1 \vee x_2 \vee x_3) \wedge (x_2 \vee x_3 \vee \overline{x}_4) \wedge (x_2 \vee \overline{x}_3 \vee \overline{x}_5)$

Example:
$$
\varphi = (x_2 \vee (x_1 \wedge \overline{x}_2)) \wedge (\overline{x_1 \wedge (x_1 \vee x_2)})
$$

Ĭ.

Add clauses to φ' for each gate

Clauses added:

 $(\overline{x}_4 \vee \overline{x}_5 \vee x_7) \wedge (\overline{x}_4 \vee x_5 \vee \overline{x}_7)$ $(x_4 \vee \overline{x}_5 \vee \overline{x}_7) \wedge (x_4 \vee x_5 \vee \overline{x}_7)$

Boolean formula
$$
\varphi \rightarrow \boxed{R}
$$
 \rightarrow 3CNF formula φ'

R: On input $\langle \varphi \rangle$, where φ is a Boolean formula Construct and output the following 3CNF formula φ' φ' has extra variable x_{n+1},\ldots,x_{n+t} one for each gate G_{j} in φ For each gate G_j , construct the forumla φ_j forcing the output of G_i to be correct given its inputs Set $\varphi' = \varphi_{n+1} \wedge \cdots \wedge \varphi_{n+t} \wedge (x_{n+t} \vee x_{n+t} \vee x_{n+t})$

requires output of φ to be TRUE

Boolean formula
$$
\varphi \rightarrow \boxed{R}
$$
 \rightarrow 3CNF formula φ'

 φ satisfiable $\longleftrightarrow \varphi'$ satisfiable

Every satisfying assignment of φ extends uniquely to a satisfying assignment of φ'

In the other direction, in every satisfying assignment of φ' , the x_1,\ldots,x_n part satisfies φ