
1/30

NP-completeness
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2015

2/30

Polynomial-time reductions

What we say
“INDEPENDENT-SET is at least as hard as CLIQUE”

What does that mean?

Wemean

If CLIQUE cannot be decided by a polynomial-time Turing machine, then
neither does INDEPENDENT-SET

If INDEPENDENT-SET can be decided by a polynomial-time Turing machine,
then so does CLIQUE

Similar to the reductions we saw in the past 4-5 lectures, but with the
additional restriction of polynomial-time

3/30

Polynomial-time reductions

CLIQUE = {〈G, k〉 | G is a graph having a clique of k vertices}
INDEPENDENT-SET = {〈G, k〉 | G is a graph having

an independent set of k vertices}

Theorem
If INDEPENDENT-SET has a polynomial-time Turing machine, so does CLIQUE

4/30

Polynomial-time reductions

If INDEPENDENT-SET has a polynomial-time Turing machine, so does CLIQUE

Proof
Suppose INDEPENDENT-SET is decided by a poly-time TMA

Wewant to build a TM S that usesA to solve CLIQUE

R A〈G, k〉
accept ifG has
a clique of size k
reject otherwise

〈G′, k′〉
S

5/30

Reducing CLIQUE to INDEPENDENT-SET

We look for a polynomial-time Turing machineR that turns the question

“DoesG have a clique of size k?”

into

“DoesG′ have an independent set (IS) of size k′?”

1 2

3 4

flip all edges7−→
1 2

3 4

GraphG GraphG′

clique of size k k=k′
←→ IS of size k′

6/30

Reducing CLIQUE to INDEPENDENT-SET

On input 〈G, k〉
ConstructG′ by flipping all edges ofG
Set k′ = k
Output 〈G′, k′〉

R〈G, k〉 〈G′, k′〉

Cliques inG ←→ Independent sets inG′

I IfG has a clique of size k
thenG′ has an independent set of size k

I IfG does not have a clique of size k
thenG′ does not have an independent set of size k

7/30

Reduction recap

We showed that

If INDEPENDENT-SET is decidable by a polynomial-time Turing machine, so is
CLIQUE

by converting any Turing machine for INDEPENDENT-SET into one for CLIQUE

To do this, we came up with a reduction that transforms instances of
CLIQUE into ones of INDEPENDENT-SET

8/30

Polynomial-time reductions

LanguageL polynomial-time reduces toL′ if

there exists a polynomial-time Turing machineR that takes an instance x
ofL into an instance y ofL′ such that

x ∈ L if and only if y ∈ L′

CLIQUE IS
L L′

x = 〈G, k〉
R

y = 〈G′, k′〉
x ∈ L y ∈ L′

G has a clique of size k G′ has an IS of size k

9/30

Themeaning of reductions

L reduces toL′ meansL is no harder thanL′

If we can solveL′, then we can also solveL

Therefore
IfL reduces toL′ andL′ ∈ P, thenL ∈ P

R poly-time
TM forL′x

accept

reject

y

x ∈ L y ∈ L′ TM accepts

10/30

Direction of reduction

Pay attention to the direction of reduction

“A is no harder than B” and “B is no harder than A”

have completely different meanings

It is possible thatL reduces toL′ andL′ reduces toL

That meansL andL′ are as hard as each other
For example, IS and CLIQUE reduce to each other

11/30

Boolean formula satisfiability

A boolean formula is an expression made up of variables, ANDs, ORs, and
negations, like

ϕ = (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1)

Task: Assign TRUE/FALSE values to variables so that the formula evaluates
to true

e.g. x1 = F x2 = F x3 = T x4 = T

Given a formula, decide whether such an assignment exist

12/30

3SAT

SAT = {〈ϕ〉 | ϕ is a satisfiable Boolean formula}
3SAT = {〈ϕ〉 | ϕ is a satisfiable Boolean formula

conjunctive normal form with 3 literals per clause}

literal: xi or x i
Conjuctive Normal Form (CNF): AND of ORs of literals

3CNF: CNF with 3 literals per clause (repetitions allowed)

(x1︸︷︷︸
literal

∨x2 ∨ x2) ∧ (x2 ∨ x3 ∨ x4)︸ ︷︷ ︸
clause

13/30

3SAT is in NP

ϕ = (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1)

Finding a solution:
Try all possible assignments
FFFF FTFF TFFF TTFF
FFFT FTFT TFFT TTFT
FFTF FTTF TFTF TTTF
FFTT FTTT TFTT TTTT

For n variables, there are 2n

possible assignments
Takes exponential time

Verifying a solution:
substitute
x1 = F x2 = F
x3 = T x4 = T
evaluating the formula
ϕ = (F ∨ T) ∧ (F ∨ F ∨ T) ∧ (T)
can be done in linear time

14/30

Cook–Levin theorem

EveryL ∈ NP reduces to SAT

SAT = {〈ϕ〉 | ϕ is a satisfiable Boolean formula}
e.g. ϕ = (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1)

Every problem in NP is no harder than SAT

But SAT itself is in NP, so SATmust
be the “hardest problem” in NP

If SAT ∈ P, then P = NP

P

NP

•
•

• •

•SAT •

15/30

NP-completeness

A languageL is NP-hard if:

For everyN in NP,N reduces toL

A languageL is NP-complete ifL is in NP andL is NP-hard

Cook–Levin theorem

SAT is NP-complete

P

NP

•
•

• •

•L •

16/30

Our picture of NP

NP-complete

P

NP

•PATH
•L01

•

•

•SAT •IS

•CLIQUE

A→ B: A reduces toB

In practice, most NP problems are either in P (easy) or NP-complete
(probably hard)

17/30

Interpretation of Cook–Levin theorem

Optimistic:

If we manage to solve SAT, then we can also solve CLIQUE andmany other

Pessimistic:

Since we believe P 6= NP, it is unlikely that we will ever have a fast
algorithm for SAT

18/30

Ubiquity of NP-complete problems

We saw a few examples of NP-complete problems, but there aremanymore

Surprisingly, most computational problems are either in P or NP-complete

By now thousands of problems have been identified as NP-complete

19/30

Reducing IS to VC

R〈G, k〉 〈G′, k′〉

G has an IS of size k ←→ G′ has a VC of size k′

Example

Independent sets:

∅, {1}, {2}, {3}, {4},
{1, 2}, {1, 3}

1 2

3 4

vertex covers:

{2, 4}, {3, 4},
{1, 2, 3}, {1, 2, 4},
{1, 3, 4}, {2, 3, 4},
{1, 2, 3, 4}

20/30

Reducing IS to VC

Claim
S is an independent set if and only if

S is a vertex cover

1 2

3 4

Proof:

S is an independent set
m

no edge has both endpoints in S
m

every edge has an endpoint in S
m

S is a vertex cover

IS VC
∅ {1, 2, 3, 4}
{1} {2, 3, 4}
{2} {1, 3, 4}
{3} {1, 2, 4}
{4} {1, 2, 3}
{1, 2} {3, 4}
{1, 3} {2, 4}

21/30

Reducing IS to VC

R〈G, k〉 〈G′, k′〉

R: On input 〈G, k〉
Output 〈G,n − k〉

G has an IS of size k ←→ G has a VC of size n − k

Overall sequence of reductions:

SAT→ 3SAT→ CLIQUE
3→ IS

3→ VC

22/30

Reducing 3SAT to CLIQUE

3SAT = {ϕ | ϕ is a satisfiable Boolean formula in 3CNF}
CLIQUE = {〈G, k〉 | G is a graph having a clique of k vertices}

R3CNF formulaϕ 〈G, k〉

ϕ is satisfiable ←→ G has a clique of size k

23/30

Reducing 3SAT to CLIQUE

Example:
ϕ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

x1

x1

x2

x1

x2

x2

x1

x2

x3

One vertex for each literal occurrence

One edge for each consistent pair

24/30

Reducing 3SAT to CLIQUE

R3CNF formulaϕ 〈G, k〉

R: On inputϕ, whereϕ is a 3CNF formula withm clauses
Construct the following graphG:

G has 3m vertices, divided intom groups
One for each literal occurrence inϕ

If vertices u and v are in different groups and consistent
Add an edge (u, v)

Output 〈G,m〉

25/30

Reducing 3SAT to CLIQUE

R3CNF formulaϕ 〈G, k〉

ϕ is satisfiable ←→ G hasa clique of sizem

x1

x1

x2

x1

x2

x2

x1

x2

x3

ϕ = (x1
T
∨ x1

T
∨ x2

F
) ∧ (x1

F
∨ x2

T
∨ x2

T
) ∧ (x1

F
∨ x2

F
∨ x3

T
)

26/30

Reducing 3SAT to CLIQUE: Summary

R3CNF formulaϕ 〈G, k〉

Every satisfying assignment ofϕ gives a clique of sizem inG

Conversely, every clique of sizem inG gives a satisfying assignment ofϕ

Overall sequence of reductions:

SAT→ 3SAT
3→ CLIQUE

3→ IS
3→ VC

27/30

SAT and 3SAT

SAT = {ϕ | ϕ is a satisfiable Boolean formula}

e.g. ((x1 ∨ x2) ∧ (x1 ∨ x2)) ∨ ((x1 ∨ (x2 ∧ x3)) ∧ x3)

3SAT = {ϕ′ | ϕ′ is a satisfiable 3CNF formula in 3CNF}

e.g. (x1 ∨ x2 ∨ x2) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5)

28/30

Reducing SAT to 3SAT

Example: ϕ = (x2 ∨ (x1 ∧ x2)) ∧ (x1 ∧ (x1 ∨ x2))

AND

OR

AND

NOT

x2

x3

x6

x8

NOT

AND

NOT

x1

x4

OR

x1 x2

x5

x7

x9

x1x2

x10

Tree representation ofϕ
Add extra variable toϕ′ for each

wire in the tree

Add clauses toϕ′ for each gate

x4x5x7 x7 = x4 ∧ x5
T T T T
T T F F
T F T F
T F F T
F T T F
F T F T
F F T F
F F F T

Clauses added:
(x4 ∨ x5 ∨ x7) ∧ (x4 ∨ x5 ∨ x7)
(x4 ∨ x5 ∨ x7) ∧ (x4 ∨ x5 ∨ x7)

28/30

Reducing SAT to 3SAT

Example: ϕ = (x2 ∨ (x1 ∧ x2)) ∧ (x1 ∧ (x1 ∨ x2))

AND

OR

AND

NOT

x2

x3

x6

x8

NOT

AND

NOT

x1

x4

OR

x1 x2

x5

x7

x9

x1x2

x10

Tree representation ofϕ
Add extra variable toϕ′ for each

wire in the tree

Add clauses toϕ′ for each gate

x4x5x7 x7 = x4 ∧ x5
T T T T
T T F F
T F T F
T F F T
F T T F
F T F T
F F T F
F F F T

Clauses added:
(x4 ∨ x5 ∨ x7) ∧ (x4 ∨ x5 ∨ x7)
(x4 ∨ x5 ∨ x7) ∧ (x4 ∨ x5 ∨ x7)

29/30

Reducing SAT to 3SAT

RBoolean formulaϕ 3CNF formulaϕ′

R: On input 〈ϕ〉, whereϕ is a Boolean formula
Construct and output the following 3CNF formulaϕ′

ϕ′ has extra variable xn+1, . . . , xn+t
one for each gateGj inϕ

For each gateGj , construct the forumlaϕj
forcing the output ofGj to be correct given its inputs

Setϕ′ = ϕn+1 ∧ · · · ∧ ϕn+t ∧ (xn+t ∨ xn+t ∨ xn+t)︸ ︷︷ ︸
requires output ofϕ to be TRUE

30/30

Reducing SAT to 3SAT

RBoolean formulaϕ 3CNF formulaϕ′

ϕ satisfiable←→ϕ′ satisfiable

Every satisfying assignment ofϕ extends uniquely to a satisfying
assignment ofϕ′

In the other direction, in every satisfying assignment ofϕ′, the x1, . . . , xn
part satisfiesϕ

