Church-Turing Thesis

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

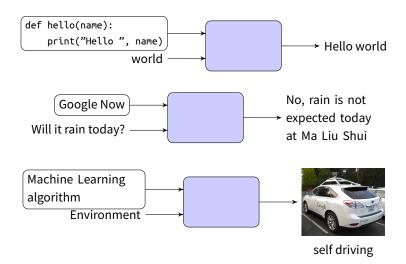
Chinese University of Hong Kong

Fall 2015

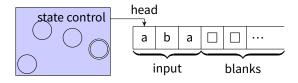
What is a computer?

A computer is a machine that manipulates data according to a list of instructions

What is a computer?



Turing machines



Can both read from and write to the tape

Head can move both left and right

Unlimited tape space

Has two special states accept and reject

Example

$$L_1 = \{ w \# w \mid w \in \{ \mathsf{a}, \mathsf{b} \}^* \}$$

Strategy:

Read and remember the first symbol <u>abbaa#abbaa</u>

Cross it off <u>x</u>bbaa#abbaa

Read the first symbol past # xbbaa#<u>a</u>bbaa

If they don't match, reject

If they do, cross it off xbbaa#xbbaa

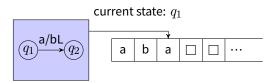
Example

$$L_1 = \{ w \# w \mid w \in \{ \mathsf{a}, \mathsf{b} \}^* \}$$

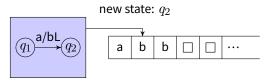
Strategy:

Look for and remember the first uncrossed symbol	x <u>b</u> baa#xbbaa
Cross it off	x <u>x</u> baa#xbbaa
Read the first symbol past #	xxbaa#x <u>b</u> baa
If they do, cross it off, else reject	xxbaa#x <u>x</u> baa
At the end, there should be only x's	,,
ne me end, me end end be enny ne	xxxxx#xxxx <u>x</u>

How Turing machines operate



Replace a with b, and move head left



Computing devices: from practice to theory

Brief history of computing devices

Antikythera Mechanism (~100BC)

Abacus (Sumer 2700-2300BC, China 1200)

Its reproduction

Babbage Difference engine (1840s)

Photo source: Wikipedia

Brief history of computing devices: programmable devices

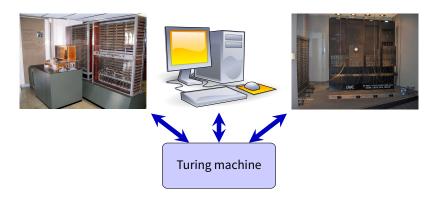
Z3 (Germany, 1941)

ENIAC (Pennsylvania, US, 1945)

Personal computers (since 1970s)

Mobile phones

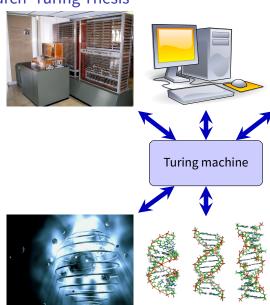
Computation is universal

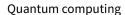


In principle, all computers have the same problem solving ability

If an algorithm can be implemented on any realistic computer, then it can be implemented on a Turing machine

Church-Turing Thesis





DNA computing

Alan Turing

Alan Turing aged 16 (1912-1954)

Invented the Turing Test to tell apart humans from computers

Broke German encryption machines during World War II

Turing Award is the "Nobel prize of Computer Science"

Turing's motivation: Understand the limitations of human computation by studying his "automatic machines"

Hilbert's Entscheidungsproblem, 1928 reformulation

David Hilbert

Entscheidungsproblem (Decision Problem)

"Write a program" to solve the following task:

Input: mathematical statement

(in first-order logic)

Output: whether the statement is true

In fact, he didn't ask to "write a program", but to "design a procedure"

Examples of statements expressible in first-order logic:

Fermat's last theorem:

 $x^n+y^n=z^n$ has no integer solution for integer $n\geqslant 3$

Twin prime conjecture:

There are infinitely many pairs of primes of the form p and p+2

Undecidability

Entscheidungsproblem (Decision Problem)

Design a procedure to solve the following task:

Input: mathematical statement

(in first-order logic)

Output: whether the statement is true

Church (1935-1936) and Turing (1936-1937) independently showed the procedure that Entscheidungsproblem asks for cannot exist!

Definitions of procedure/algorithm:

 λ -calculus (Church) and automatic machine (Turing)

Church-Turing Thesis

Church-Turing Thesis

Intuitive notion of algorithms coincides with those implementable on Turing machines

Supporting arguments:

- Turing machine is intuitive
- Many independent definitions of "algorithms" turn out to be equivalent

References:

Alan Turing, "On Computable Numbers, with an Application to the Entscheidungsproblem", 1937 Alonzo Church, "A Note on the Entscheidungsproblem", 1936

Formal definition of Turing machine

A Turing Machine is
$$(Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{acc}}, q_{\mathsf{rej}})$$
, where

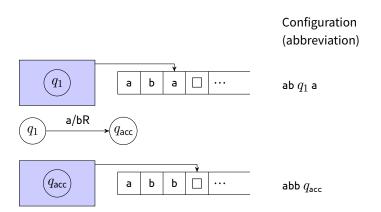
- Q is a finite set of states
- $ightharpoonup \Sigma$ is the input alphabet, not containing the blank symbol \square
- $ightharpoonup \Gamma$ is the tape alphabet ($\Sigma \subseteq \Gamma$) including \square
- ▶ $q_0 \in Q$ is the initial state
- $lacktriangledown q_{
 m acc}, q_{
 m rej} \in \mathit{Q}$ are the accepting and rejecting states
- $ightharpoonup \delta$ is the transition function

$$\delta: (Q \setminus \{q_{\mathsf{acc}}, q_{\mathsf{rej}}\}) \times \Gamma \to Q \times \Gamma \times \{\mathsf{L}, \mathsf{R}\}$$

Turing machines are deterministic

Configurations

A configuration consists of current state, head position, and tape contents



Configurations

The start configuration of the TM on input w is $q_0 w$

We say a configuration C yields C^\prime if the TM can go from C to C^\prime in one step

Example: ab q_1 a yields abb $q_{
m acc}$

An accepting configuration is one that contains $q_{
m acc}$ A rejecting configuration is one that contains $q_{
m rej}$

The language of a Turing machine

A Turing machine M accepts x if there is a sequence of configurations C_0, C_1, \ldots, C_k where

 C_0 is starting C_i yields C_{i+1} C_k is accepting

The language recognized by M is the set of all strings that M accepts