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Parsing

S → 0S1 | 1S0S | T
T → S | ε

input: 0011

Is 0011 ∈ L?
If so, how to build a parse tree with a program?
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Problems

1. Trying all derivations may take too long

2. If input is not in the language, parsing will never stop

Let’s tackle the 2nd problem
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When to stop

S → 0S1 | 1S0S | T
T → S | ε

Idea: Stop when
|derived string| > |input|

Problems:

S ⇒ 0S1 ⇒ 0T1 ⇒ 01

Derived string may shrink
because of “ε-productions”

S ⇒ T ⇒ S ⇒ T ⇒ . . .

Derviation may loop because
of “unit productions”

Remove ε and unit productions
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Removing ε-productions

Goal: remove allA → ε rules for every non-start variableA

If S is the start variable and the
rule S → ε exists

Add a new start variableT
Add the ruleT → S

For every ruleA → εwhereA is
not the (new) start variable

1. Remove the ruleA → ε

2. If you seeB → αAβ
Add a new ruleB → αβ

S → ACD
A → a
B → ε
C → ED | ε
D → BC | b
E → b

D → C
S → AD
D → ε

C → E
S → A

Removing → ε
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Eliminating ε-productions

For everyA → ε rule whereA is not the start variable

1. Remove the ruleA → ε

2. If you seeB → αAβ
Add a new ruleB → αβ

Do 2. every timeA appears

B → αAβAγ yields
B → αβAγ B → αAβγ

B → αβγ

B → A becomesB → ε

IfB → εwas removed earlier,
don’t add it back
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Eliminating unit productions

A unit production is a production of the form
A → B

Grammar:

S → 0S1 | 1S0S | T
T → S | R | ε
R → 0SR

Unit production graph:

S T

R
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Removing unit productions

1 If there is a cycle of unit productions

A → B → · · · → C → A

delete it and replace everything withA

S → 0S1 | 1S0S | T
T → S | R | ε
R → 0SR

S T

R

S → 0S1 | 1S0S
S → R | ε
R → 0SR

ReplaceT by S
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Removal of unit productions

2 replace any chain

A → B → · · · → C → α

by A → α, B → α, . . . , C → α

S → 0S1 | 1S0S
| R | ε

R → 0SR

S

R

S → 0S1 | 1S0S
| 0SR | ε

R → 0SR

Replace S → R → 0SR by S → 0SR, R → 0SR
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Recap

Problems:

1. Trying all derivations may take too long

2. If input is not in the language, parsing will never stop 3

Solution to problem 2:

1. Eliminate ε productions

2. Eliminate unit productions

Try all possible derivations but stop parsing when
|derived string| > |input|
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Example

S → 0S1 | 0S0S | T
T → S | 0

=⇒ S → 0S1 | 0S0S | 0

input: 0011

S

0S0S
00S0S0S too long

00S10S too long

000S
0000S0S too long

0000S1 too long

0000 7

0S1

00S0S1 too long

00S11 too long

001 7
0 7

Conclusion: 0011 /∈ L
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Problems

1. Trying all derivations may take too long
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Preparations

A faster way to parse:

Cocke–Younger–Kasami algorithm

To use it wemust perprocess the CFG:

Eliminate ε productions
Eliminate unit productions

Convert CFG to Chomsky Normal Form
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Chomsky Normal Form

A CFG is in Chomsky Normal Form if
every production has the form

A → BC or A → a
where neitherB norC is the start variable

but we also allow S → ε for start variable S
Noam Chomsky

Convert to Chomsky Normal Form:

A → BcDE =⇒
replace
terminals
with new
variables

A → BCDE
C → c

=⇒
break up
sequences
with new
variables

A → BX
X → CY
Y → DE
C → c
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Cocke–Younger–Kasami algorithm

S → AB | BC
A → BA | a
B → CC | b
C → AB | a

Input: x = baaba

let
x[i, `] = xixi+1 . . . xi+`−1 b a a b a

i

`

1 2 3 4 5

1

2

3

4

5

B A|C A|C B A|C
S |A B S |C S |A

For every substring x[i, `], remember all variablesR that derive x[i, `]
Store in a tableT [i, `]
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ComputingT [i, `] for ` > 2

To computeT [2, 4]

Try all possible ways to split x[2, 4] into two substrings

b a a b a

1
A|C B

2
B S |A

3
B A|C

Look up entries regarding shorter substrings previously computed

S → AB | BC
A → BA | a
B → CC | b
C → AB | a

T [2, 4] = S |A|C



17/18

ComputingT [i, `] for ` > 2

To computeT [2, 4]

Try all possible ways to split x[2, 4] into two substrings

b a a b a

1
A|C B

2
B S |A

3
B A|C

Look up entries regarding shorter substrings previously computed

S → AB | BC
A → BA | a
B → CC | b
C → AB | a

T [2, 4] = S |A|C



17/18

ComputingT [i, `] for ` > 2

To computeT [2, 4]

Try all possible ways to split x[2, 4] into two substrings

b a a b a

1
A|C B

2
B S |A

3
B A|C

Look up entries regarding shorter substrings previously computed

S → AB | BC
A → BA | a
B → CC | b
C → AB | a

T [2, 4] = S |A|C



18/18

Cocke–Younger–Kasami algorithm

S → AB | BC
A → BA | a
B → CC | b
C → AB | a

Input: x = baaba

b a a b a

i

`

1 2 3 4 5

1

2

3

4

5

B A|C A|C B A|C

AS | B S |C S |A

- B B

- S |A|C

S|A|C

Get parse tree by tracing back derivations


