CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

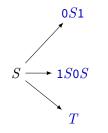
Fall 2015

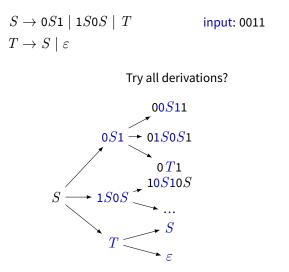
$$\begin{split} S &\to 0S1 \mid 1S0S \mid T & \text{input: 0011} \\ T &\to S \mid \varepsilon \end{split}$$

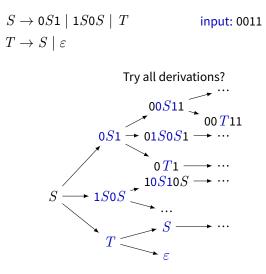
$\label{eq:ls0011} \text{Is 0011} \in L?$ If so, how to build a parse tree with a program?

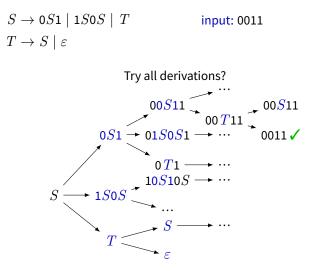
$$S
ightarrow 0S1 \mid 1S0S \mid T$$
 input: 0011
 $T
ightarrow S \mid arepsilon$

Try all derivations?









This is (part of) the tree of all derivations, not the parse tree

Problems

- 1. Trying all derivations may take too long
- 2. If input is not in the language, parsing will never stop

Let's tackle the 2nd problem

When to stop

$$\begin{split} S &\to \mathbf{0}S\mathbf{1} \mid \mathbf{1}S\mathbf{0}S \mid T \\ T &\to \mathbf{S} \mid \varepsilon \end{split}$$

Idea: Stop when |derived string| > |input|

When to stop

$$\begin{split} S &\to \mathbf{0}S\mathbf{1} \mid \mathbf{1}S\mathbf{0}S \mid T \\ T &\to \mathbf{S} \mid \varepsilon \end{split}$$

Idea: Stop when |derived string| > |input|

Problems:

 $S \Rightarrow \mathbf{0}S\mathbf{1} \Rightarrow \mathbf{0}T\mathbf{1} \Rightarrow \mathbf{0}\mathbf{1}$

Derived string may shrink because of " ε -productions"

When to stop

$$\begin{split} S &\to \mathbf{0}S\mathbf{1} \mid \mathbf{1}S\mathbf{0}S \mid T \\ T &\to \mathbf{S} \mid \varepsilon \end{split}$$

Idea: Stop when |derived string| > |input|

Problems:

 $S \Rightarrow \mathbf{0}S\mathbf{1} \Rightarrow \mathbf{0}T\mathbf{1} \Rightarrow \mathbf{0}\mathbf{1}$

Derived string may shrink because of " ε -productions"

 $S \Rightarrow T \Rightarrow S \Rightarrow T \Rightarrow \dots$

Derviation may loop because of "unit productions"

Remove ε and unit productions

Goal: remove all $A \to \varepsilon$ rules for every non-start variable A

If S is the start variable and the rule $S \to \varepsilon$ exists

Add a new start variable $\,T\,$ Add the rule $\,T \rightarrow S\,$

$$\begin{array}{l} S \rightarrow ACD \\ A \rightarrow \mathsf{a} \\ B \rightarrow \varepsilon \\ C \rightarrow ED \mid \varepsilon \\ D \rightarrow BC \mid \mathsf{b} \\ E \rightarrow \mathsf{b} \end{array}$$

For every rule $A \to \varepsilon$ where A is not the (new) start variable

- 1. Remove the rule $A \to \varepsilon$
- 2. If you see $B \to \alpha A \beta$ Add a new rule $B \to \alpha \beta$

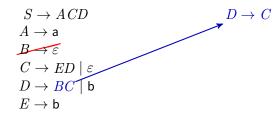
Goal: remove all $A \to \varepsilon$ rules for every non-start variable A

If S is the start variable and the rule $S \to \varepsilon$ exists

Add a new start variable $\,T\,$ Add the rule $\,T \rightarrow S\,$

For every rule $A \to \varepsilon$ where A is not the (new) start variable

- 1. Remove the rule $A \to \varepsilon$
- 2. If you see $B \to \alpha A \beta$ Add a new rule $B \to \alpha \beta$



Removing $B \to \varepsilon$

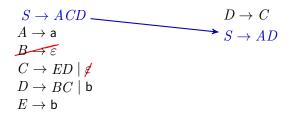
Goal: remove all $A \to \varepsilon$ rules for every non-start variable A

If S is the start variable and the rule $S \to \varepsilon$ exists

Add a new start variable $\,T\,$ Add the rule $\,T \rightarrow S\,$

For every rule $A \to \varepsilon$ where A is not the (new) start variable

- 1. Remove the rule $A \to \varepsilon$
- 2. If you see $B \to \alpha A \beta$ Add a new rule $B \to \alpha \beta$



Removing $C \to \varepsilon$

Goal: remove all $A \to \varepsilon$ rules for every non-start variable A

If S is the start variable and the rule $S \to \varepsilon$ exists

Add a new start variable $\,T\,$ Add the rule $\,T \rightarrow S\,$

$$S \rightarrow ACD$$

$$A \rightarrow a$$

$$B \rightarrow \varepsilon$$

$$C \rightarrow ED \mid \not\in$$

$$D \rightarrow BC \mid b$$

$$E \rightarrow b$$

For every rule $A \to \varepsilon$ where A is not the (new) start variable

- 1. Remove the rule $A \to \varepsilon$
- 2. If you see $B \to \alpha A \beta$ Add a new rule $B \to \alpha \beta$

 $\begin{array}{c} D \to C \\ S \longleftrightarrow AD \\ D \to \varepsilon \end{array}$

Removing $C \to \varepsilon$

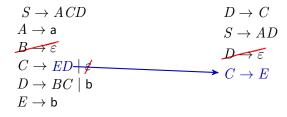
Goal: remove all $A \to \varepsilon$ rules for every non-start variable A

If S is the start variable and the rule $S \to \varepsilon$ exists

Add a new start variable $\,T\,$ Add the rule $\,T \rightarrow S\,$

For every rule $A \to \varepsilon$ where A is not the (new) start variable

- 1. Remove the rule $A \to \varepsilon$
- 2. If you see $B \to \alpha A \beta$ Add a new rule $B \to \alpha \beta$



Removing $D \to \varepsilon$

Goal: remove all $A \to \varepsilon$ rules for every non-start variable A

If S is the start variable and the rule $S \to \varepsilon$ exists

Add a new start variable $\,T\,$ Add the rule $\,T \rightarrow S\,$

$$S \rightarrow ACD$$

$$A \rightarrow a$$

$$B \rightarrow \varepsilon$$

$$C \rightarrow ED \mid \notin$$

$$D \rightarrow BC \mid b$$

$$E \rightarrow b$$

For every rule $A \to \varepsilon$ where A is not the (new) start variable

- 1. Remove the rule $A \to \varepsilon$
- 2. If you see $B \to \alpha A \beta$ Add a new rule $B \to \alpha \beta$

 $D \to C$ $S \to AD$ $D \to \varepsilon$ $C \to E$ $S \to A$

Removing $D \to \varepsilon$

Eliminating ε -productions

For every $A \to \varepsilon$ rule where A is not the start variable

- 1. Remove the rule $A \to \varepsilon$
- 2. If you see $B \to \alpha A \beta$ Add a new rule $B \to \alpha \beta$

Do 2. every time A appears

 $\begin{array}{c} B \rightarrow \alpha A\beta A\gamma \text{ yields} \\ B \rightarrow \alpha \beta A\gamma \quad B \rightarrow \alpha A\beta\gamma \\ B \rightarrow \alpha \beta\gamma \end{array}$

Eliminating ε -productions

For every $A \to \varepsilon$ rule where A is not the start variable

- 1. Remove the rule $A \to \varepsilon$
- 2. If you see $B \to \alpha A \beta$ Add a new rule $B \to \alpha \beta$

Do 2. every time A appears

 $\begin{array}{c} B \rightarrow \alpha A\beta A\gamma \text{ yields} \\ B \rightarrow \alpha \beta A\gamma \quad B \rightarrow \alpha A\beta\gamma \\ B \rightarrow \alpha \beta\gamma \end{array}$

 $B \to A \text{ becomes } B \to \varepsilon$

If $B \to \varepsilon$ was removed earlier, don't add it back

Eliminating unit productions

A unit production is a production of the form $A \to B$

Grammar:

Unit production graph:

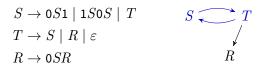
$$\begin{split} S &\to 0S1 \mid 1S0S \mid T \\ T &\to S \mid R \mid \varepsilon \\ R &\to 0SR \end{split}$$

Removing unit productions

(1) If there is a cycle of unit productions

$$A \to B \to \dots \to C \to A$$

delete it and replace everything with ${\boldsymbol A}$

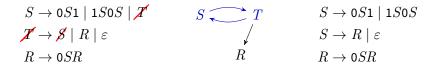


Removing unit productions

① If there is a cycle of unit productions

$$A \to B \to \dots \to C \to A$$

delete it and replace everything with ${\boldsymbol A}$



Replace T by S

Removal of unit productions

Removal of unit productions

(2) replace any chain $A \to B \to \dots \to C \to \alpha$ $by \quad A \to \alpha, \quad B \to \alpha, \quad \dots, \quad C \to \alpha$ $S \to 0S1 \mid 1S0S \qquad S \qquad S \to 0S1 \mid 1S0S$ $\mid R \mid \varepsilon \qquad \downarrow \qquad \mid 0SR \mid \varepsilon$ $R \to 0SR \qquad R \qquad R \rightarrow 0SR$

Replace $S \to R \to 0SR$ by $S \to 0SR$, $R \to 0SR$

Recap

Problems:

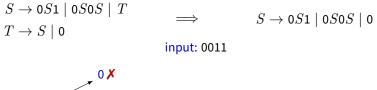
- 1. Trying all derivations may take too long
- 2. If input is not in the language, parsing will never stop \checkmark

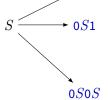
Solution to problem 2:

- 1. Eliminate ε productions
- 2. Eliminate unit productions

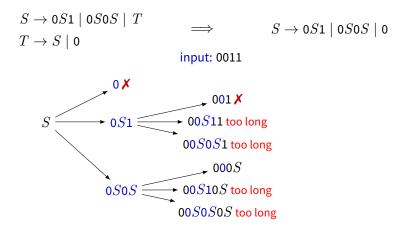
Try all possible derivations but stop parsing when $|{\rm derived \ string}| > |{\rm input}|$

Example

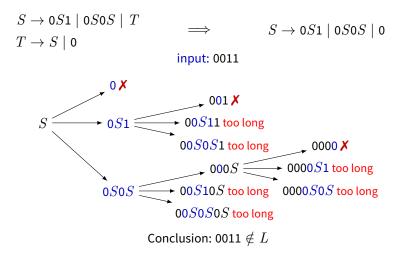




Example



Example



Problems

- 1. Trying all derivations may take too long
- 2. If input is not in the language, parsing will never stop

Preparations

A faster way to parse:

Cocke-Younger-Kasami algorithm

To use it we must perprocess the CFG:

Eliminate ε productions Eliminate unit productions Convert CFG to Chomsky Normal Form

Chomsky Normal Form

A CFG is in Chomsky Normal Form if every production has the form

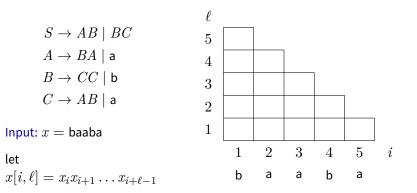
 $A \rightarrow BC$ or $A \rightarrow$ a where neither B nor C is the start variable

but we also allow $S \to \varepsilon$ for start variable S

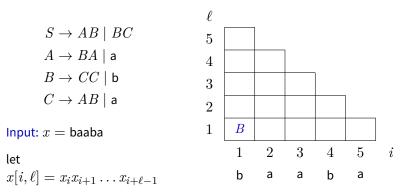
Noam Chomsky

Convert to Chomsky Normal Form:

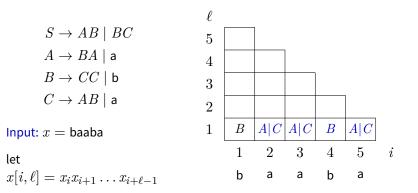
$$\begin{array}{cccc} A \rightarrow B \mathsf{c} D E & \Longrightarrow & A \rightarrow B C D E & \Longrightarrow & A \rightarrow B X \\ & \mathsf{replace} & C \rightarrow \mathsf{c} & & \mathsf{break} \ \mathsf{up} & X \rightarrow C Y \\ & \mathsf{terminals} & & \mathsf{sequences} & Y \rightarrow D E \\ & \mathsf{with} \ \mathsf{new} & & & \mathsf{with} \ \mathsf{new} & C \rightarrow \mathsf{c} \\ & \mathsf{variables} & & \mathsf{variables} \end{array}$$



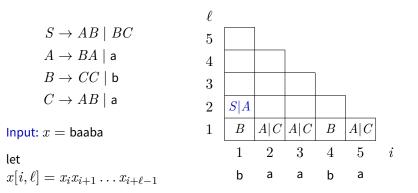
For every substring $x[i, \ell]$, remember all variables R that derive $x[i, \ell]$ Store in a table $T[i, \ell]$



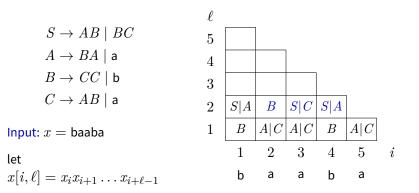
For every substring $x[i, \ell]$, remember all variables R that derive $x[i, \ell]$ Store in a table $T[i, \ell]$



For every substring $x[i,\ell]$, remember all variables R that derive $x[i,\ell]$ Store in a table $T[i,\ell]$



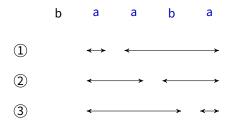
For every substring $x[i,\ell]$, remember all variables R that derive $x[i,\ell]$ Store in a table $T[i,\ell]$



For every substring $x[i,\ell]$, remember all variables R that derive $x[i,\ell]$ Store in a table $T[i,\ell]$ Computing $T[i,\ell]$ for $\ell \geqslant 2$

To compute ${{\cal T}}[2,4]$

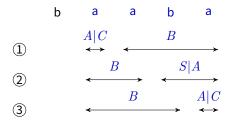
Try all possible ways to split x[2,4] into two substrings



Computing $T[i, \ell]$ for $\ell \ge 2$

To compute ${{\cal T}}[2,4]$

Try all possible ways to split x[2,4] into two substrings

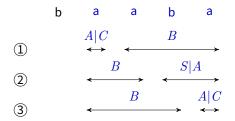


Look up entries regarding shorter substrings previously computed

Computing $T[i, \ell]$ for $\ell \ge 2$

To compute ${{\cal T}}[2,4]$

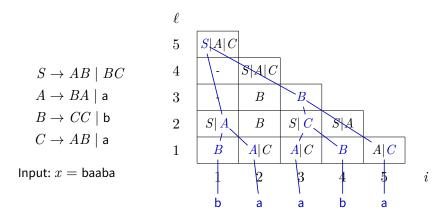
Try all possible ways to split x[2,4] into two substrings



Look up entries regarding shorter substrings previously computed

$$S \to AB \mid BC$$

 $A \to BA \mid \mathsf{a}$
 $B \to CC \mid \mathsf{b}$
 $C \to AB \mid \mathsf{a}$



Get parse tree by tracing back derivations