
1/34

Context-free Grammars
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2015

2/34

Precedence in Arithmetic Expressions

bash$ python

Python 2.7.9 (default, Apr 2 2015, 15:33:21)

>>> 2+3*5

17

*

+

2 3

5

= 25

or

+

2 *

3 5

= 17

3/34

Grammars describe meaning

EXPR → EXPR + TERM

EXPR → TERM

TERM → TERM * NUM

TERM → NUM

NUM → 0-9

rules for valid (simple)
arithmetic expressions

EXPR

EXPR

TERM

NUM

2 +

TERM

TERM

NUM

3 *

NUM

5

Rules always yield the correct meaning

4/34

Grammar of English

SENTENCE → NOUN-PHRASE VERB-PHRASE
a girl︸ ︷︷ ︸

NOUN-PHRASE

likes the boy︸ ︷︷ ︸
VERB-PHRASE

NOUN-PHRASE → A-NOUN

or → A-NOUN PREP-PHRASE

a girl︸ ︷︷ ︸
A-NOUN

a girl︸ ︷︷ ︸
A-NOUN

with a flower︸ ︷︷ ︸
PREP-PHRASE

5/34

Grammar of English

NOUN-PHRASE → A-NOUN

or → A-NOUN PREP-PHRASE

a girl︸ ︷︷ ︸
A-NOUN

a girl︸ ︷︷ ︸
A-NOUN

with a flower︸ ︷︷ ︸
PREP-PHRASE

PREP-PHRASE → PREP NOUN-PHRASE
with︸︷︷︸
PREP

a flower︸ ︷︷ ︸
NOUN-PHRASE

Recursive structure

5/34

Grammar of English

NOUN-PHRASE → A-NOUN

or → A-NOUN PREP-PHRASE

a girl︸ ︷︷ ︸
A-NOUN

a girl︸ ︷︷ ︸
A-NOUN

with a flower︸ ︷︷ ︸
PREP-PHRASE

PREP-PHRASE → PREP NOUN-PHRASE
with︸︷︷︸
PREP

a flower︸ ︷︷ ︸
NOUN-PHRASE

Recursive structure

6/34

Grammar of (parts of) English

SENTENCE → NOUN-PHRASE VERB-PHRASE

NOUN-PHRASE → A-NOUN

NOUN-PHRASE → A-NOUN PREP-PHRASE

VERB-PHRASE → CMPLX-VERB

VERB-PHRASE → CMPLX-VERB PREP-PHRASE

PREP-PHRASE → PREP A-NOUN

A-NOUN → ARTICLE NOUN

CMPLX-VERB → VERB NOUN-PHRASE

CMPLX-VERB → VERB

ARTICLE → a

ARTICLE → the

NOUN → boy

NOUN → girl

NOUN → flower

VERB → likes

VERB → touches

VERB → sees

PREP → with

7/34

Themeaning of sentences

a girl with a flower likes the boy
ARTICLENOUN PREP ARTICLE NOUN VERB ARTICLE NOUN

A-NOUN A-NOUN A-NOUN

PREP-PHRASE NOUN-PHRASE

CMPLX-VERB

NOUN-PHRASE VERB-PHRASE

SENTENCE

7/34

Themeaning of sentences

a girl with a flower likes the boy
ARTICLENOUN PREP ARTICLE NOUN VERB ARTICLE NOUN

A-NOUN A-NOUN A-NOUN

PREP-PHRASE NOUN-PHRASE

CMPLX-VERB

NOUN-PHRASE VERB-PHRASE

SENTENCE

7/34

Themeaning of sentences

a girl with a flower likes the boy
ARTICLENOUN PREP ARTICLE NOUN VERB ARTICLE NOUN

A-NOUN A-NOUN A-NOUN

PREP-PHRASE NOUN-PHRASE

CMPLX-VERB

NOUN-PHRASE VERB-PHRASE

SENTENCE

8/34

Context-free grammar

A → 0A1

A → B
B → #

A,B are variables
0, 1 are terminals

A → 0A1 is a production
A is the start variable

A ⇒ 0A1 ⇒ 00A11 ⇒ 000A111 ⇒ 000B111 ⇒ 000#111
derivation

8/34

Context-free grammar

A → 0A1

A → B
B → #

A,B are variables
0, 1 are terminals

A → 0A1 is a production
A is the start variable

A ⇒ 0A1 ⇒ 00A11 ⇒ 000A111 ⇒ 000B111 ⇒ 000#111
derivation

9/34

Context-free grammar

A context-free grammar is given by (V ,Σ,R,S)where
I V is a finite set of variables or non-terminals
I Σ is a finite set of terminals
I R is a set of productions or substitution rules of the form

A → α

A is a variable andα is a string of variables and terminals
I S ∈ V is a variable called the start variable

10/34

Notation and conventions

E → E+E
E → (E)

E → N

N → 0N
N → 1N
N → 0

N → 1

Variables: E ,N
Terminals: +, (,), 0, 1
Start variable: E

shorthand:

E → E+E | (E) | N
N → 0N | 1N | 0 | 1

conventions:

variables in UPPERCASE
start variable comes first

11/34

Derivation

derivation: a sequential application of productions

E ⇒ E+E
⇒ (E)+E
⇒ (E)+N
⇒ (E)+1

⇒ (E+E)+1

⇒ (N+E)+1

⇒ (N+N)+1

⇒ (N+1N)+1

⇒ (N+10)+1

⇒ (1+10)+1

de
riv

at
io
n

E → E+E | (E) | N
N → 0N | 1N | 0 | 1

α ⇒ β
application of one
production

E ∗⇒ (1+10)+1 α
∗⇒ β derivation

11/34

Derivation

derivation: a sequential application of productions

E ⇒ E+E
⇒ (E)+E
⇒ (E)+N
⇒ (E)+1

⇒ (E+E)+1

⇒ (N+E)+1

⇒ (N+N)+1

⇒ (N+1N)+1

⇒ (N+10)+1

⇒ (1+10)+1

de
riv

at
io
n

E → E+E | (E) | N
N → 0N | 1N | 0 | 1

α ⇒ β
application of one
production

E ∗⇒ (1+10)+1 α
∗⇒ β derivation

12/34

Context-free languages

The language of a CFG is the set of all strings at the end of a derivation

L(G) = {w ∈ Σ∗ | S ∗⇒ w}

Questions we will ask:
I give you a CFG, what is the language?
I give you a language, write a CFG for it

13/34

Analysis example 1

A → 0A1 | B
B → #

L(G) = {0n#1n | n > 0}

Can you derive:

00#11

A ⇒ 0A1 ⇒ 00A11 ⇒ 00B11 ⇒ 00#11

#

A ⇒ B ⇒ #

00#111

No: uneven number of 0s and 1s

00##11

No: toomany #

13/34

Analysis example 1

A → 0A1 | B
B → #

L(G) = {0n#1n | n > 0}

Can you derive:

00#11 A ⇒ 0A1 ⇒ 00A11 ⇒ 00B11 ⇒ 00#11

#

A ⇒ B ⇒ #

00#111

No: uneven number of 0s and 1s

00##11

No: toomany #

13/34

Analysis example 1

A → 0A1 | B
B → #

L(G) = {0n#1n | n > 0}

Can you derive:

00#11 A ⇒ 0A1 ⇒ 00A11 ⇒ 00B11 ⇒ 00#11

A ⇒ B ⇒

00#111

No: uneven number of 0s and 1s

00##11

No: toomany #

13/34

Analysis example 1

A → 0A1 | B
B → #

L(G) = {0n#1n | n > 0}

Can you derive:

00#11 A ⇒ 0A1 ⇒ 00A11 ⇒ 00B11 ⇒ 00#11

A ⇒ B ⇒

00#111 No: uneven number of 0s and 1s

00##11 No: toomany #

14/34

Analysis example 2

S → SS | (S) | ε

Can you derive
()

S ⇒ (S)

⇒ ()

(()())

S ⇒ (S)

⇒ (SS)

⇒ ((S)S)

⇒ ((S)(S))

⇒ (()(S))

⇒ (()())

14/34

Analysis example 2

S → SS | (S) | ε

Can you derive
()

S ⇒ (S)

⇒ ()

(()())

S ⇒ (S)

⇒ (SS)

⇒ ((S)S)

⇒ ((S)(S))

⇒ (()(S))

⇒ (()())

15/34

Parse trees

S → SS | (S) | ε

A parse tree gives a more compact representation

S ⇒ (S)

⇒ (SS)

⇒ ((S)S)

⇒ ((S)(S))

⇒ (()(S))

⇒ (()())

S

(S

S

(S
ε

)

S

(S
ε

)

)

16/34

Parse trees

S ⇒ (S)

⇒ (SS)

⇒ ((S)S)

⇒ ((S)(S))

⇒ (()(S))

⇒ (()())

S ⇒ (S)

⇒ (SS)

⇒ ((S)S)

⇒ (()S)

⇒ (()(S))

⇒ (()())

S

(S

S

(S
ε

)

S

(S
ε

)

)

S ⇒ (S)

⇒ (SS)

⇒ (S (S))

⇒ ((S)(S))

⇒ (()(S))

⇒ (()())

S ⇒ (S)

⇒ (SS)

⇒ (S (S))

⇒ (S ())

⇒ ((S)())

⇒ (()())

One parse tree can represent many derivations

17/34

Analysis example 2

S → SS | (S) | ε

Can you derive

(()()

No: uneven number of (and)

())(()

No: some prefix has toomany)

17/34

Analysis example 2

S → SS | (S) | ε

Can you derive

(()() No: uneven number of (and)

())(()

No: some prefix has toomany)

17/34

Analysis example 2

S → SS | (S) | ε

Can you derive

(()() No: uneven number of (and)

())(() No: some prefix has toomany)

18/34

Analysis example 2

S → SS | (S) | ε

L(G) = {w | w has the same number of (and)

no prefix ofw has more) than (}

S
S
S

S
S
ε

S
S
ε

S
S
ε

(() ()) ()

Parsing rules:

Dividew into blocks with
same number of (and)

Each block is inL(G)

Parse each block recursively

18/34

Analysis example 2

S → SS | (S) | ε

L(G) = {w | w has the same number of (and)

no prefix ofw has more) than (}

S
S
S

S
S
ε

S
S
ε

S
S
ε

(() ()) ()

Parsing rules:

Dividew into blocks with
same number of (and)

Each block is inL(G)

Parse each block recursively

19/34

Design example 1

L = {0n1n | n > 0}

These strings have recursive structure

00001111
000111
0011
01
ε

S → 0S1 | ε

19/34

Design example 1

L = {0n1n | n > 0}

These strings have recursive structure

00001111
000111
0011
01
ε

S → 0S1 | ε

20/34

Design example 2

L = {0n1n0m1m | n > 0,m > 0}

Examples:
010011
00110011
000111

These strings have two parts:

L = L1L2

L1 = {0n1n | n > 0}
L2 = {0m1m | m > 0}

rules forL1 : S1 → 0S11 | ε
L2 is the same asL1

S → S1S1

S1 → 0S11 | ε

20/34

Design example 2

L = {0n1n0m1m | n > 0,m > 0}

Examples:
010011
00110011
000111

These strings have two parts:

L = L1L2

L1 = {0n1n | n > 0}
L2 = {0m1m | m > 0}

rules forL1 : S1 → 0S11 | ε
L2 is the same asL1

S → S1S1

S1 → 0S11 | ε

21/34

Design example 3

L = {0n1m0m1n | n > 0,m > 0}

Examples:
011001
0011
1100
00110011

These strings have a nested structure:

outer part: 0n1n

inner part: 1m0m

S → 0S1 | I
I → 1I 0 | ε

21/34

Design example 3

L = {0n1m0m1n | n > 0,m > 0}

Examples:
011001
0011
1100
00110011

These strings have a nested structure:

outer part: 0n1n

inner part: 1m0m

S → 0S1 | I
I → 1I 0 | ε

22/34

Design example 4

L = {x | x has two 0-blocks with the same number 0s}

01011, 001011001, 10010101000
allowed

11001000, 01111
not allowed

1 0 0 1︸ ︷︷ ︸
initial part

A

0 0 1 1 0 1 0 0︸ ︷︷ ︸
middle part

B

1 0 1 1 0︸ ︷︷ ︸
final part

C

A: cannot end in 0
C : cannot begin with 0

22/34

Design example 4

L = {x | x has two 0-blocks with the same number 0s}

01011, 001011001, 10010101000
allowed

11001000, 01111
not allowed

1 0 0 1︸ ︷︷ ︸
initial part

A

0 0 1 1 0 1 0 0︸ ︷︷ ︸
middle part

B

1 0 1 1 0︸ ︷︷ ︸
final part

C

A: cannot end in 0
C : cannot begin with 0

23/34

Design example 4

1 0 0 1︸ ︷︷ ︸
A

0 0 1 1 0 1 0 0︸ ︷︷ ︸
B

1 0 1 1 0︸ ︷︷ ︸
C

S → ABC
A → ε | U1

U → 0U | 1U | ε
C → ε | 1U

B → 0D0 | 0B0

D → 1U1 | 1

A: ε, or ends in 1
C : ε, or begins with 1
U : any string

B has recursive structure

0 0

D︷ ︸︸ ︷
1 1 0 1 0 0

same number of 0s
at least one 0
D: begins and ends in 1

23/34

Design example 4

1 0 0 1︸ ︷︷ ︸
A

0 0 1 1 0 1 0 0︸ ︷︷ ︸
B

1 0 1 1 0︸ ︷︷ ︸
C

S → ABC
A → ε | U1

U → 0U | 1U | ε
C → ε | 1U
B → 0D0 | 0B0

D → 1U1 | 1

A: ε, or ends in 1
C : ε, or begins with 1
U : any string
B has recursive structure

0 0

D︷ ︸︸ ︷
1 1 0 1 0 0

same number of 0s
at least one 0
D: begins and ends in 1

24/34

Context-free versus regular

Write a CFG for the language (0+ 1)∗111

S → U111

U → 0U | 1U | ε

Can you do so for every regular language?

Every regular language is context-free

regular
expression NFA DFA

24/34

Context-free versus regular

Write a CFG for the language (0+ 1)∗111

S → U111

U → 0U | 1U | ε

Can you do so for every regular language?

Every regular language is context-free

regular
expression NFA DFA

24/34

Context-free versus regular

Write a CFG for the language (0+ 1)∗111

S → U111

U → 0U | 1U | ε

Can you do so for every regular language?

Every regular language is context-free

regular
expression NFA DFA

25/34

From regular to context-free

regular expression ⇒ CFG

∅ grammar with no rules

ε S → ε

a (alphabet symbol) S → a

E1 + E2 S → S1 | S2

E1E2 S → S1S2

E∗
1 S → SS1 | ε

S becomes the new start variable

26/34

Context-free versus regular

Is every context-free language regular?

S → 0S1 L = {0n1n | n > 0}
Is context-free but not regular

regular

context-free

26/34

Context-free versus regular

Is every context-free language regular?

S → 0S1 L = {0n1n | n > 0}
Is context-free but not regular

regular

context-free

27/34

Ambiguity

28/34

Ambiguity

E → E+E | E*E | (E) | N
N → 1N | 2N | 1 | 2

1+2*2

*

+

1 2

2

7
= 6

+

1 *

2 2

= 5

A CFG is ambiguous if some string has more than one parse tree

29/34

Example

Is S → SS |x ambiguous?

Yes, because
S

S

S
x

S
x

S
x

S

S
x

S

S
x

S
x

Two ways to derive xxx

29/34

Example

Is S → SS |x ambiguous?

Yes, because
S

S

S
x

S
x

S
x

S

S
x

S

S
x

S
x

Two ways to derive xxx

30/34

Disambiguation

S → SS |x ⇒ S → Sx|x

S

S

S
x

x

x

Sometimes we can rewrite the grammar to remove ambiguity

31/34

Disambiguation

E → E+E | E*E | (E) | N
N → 1N | 2N | 1 | 2

+ and * have the same precedence!
Dived expression into terms and factors

2 * (1 + 2 * 2)
F F

TT

FT

32/34

Disambiguation

E → E+E | E*E | (E) | N
N → 1N | 2N | 1 | 2

An expression is a sum of one or more terms E → T | E+T

Each term is a product of one or more factors T → F | T*F

Each factor is a parenthesized expression or a number F → (E) | 1 | 2

33/34

Parsing example

E → T | E+T
T → F | T*F
F → (E) | 1 | 2

Parse tree for
2+(1+1+2*2)+1

E
E
T

T
F
2

+ F
(E
E

E
T
F
1

+ T
F
1

+ T
T
F
2

* F
2

)

+ T
F
1

34/34

Disambiguation

Disambiguation is not always possible because
There exists inherently ambiguous languages

There is no general procedure for disambiguation

In programming languages, ambiguity comes from the precedence rules,
and we can resolve like in the example

In English, ambiguity is sometimes a problem:

︸ ︷︷ ︸︷ ︸︸ ︷
I look at

︷ ︸︸ ︷
the dogwith one eye︸ ︷︷ ︸

34/34

Disambiguation

Disambiguation is not always possible because
There exists inherently ambiguous languages

There is no general procedure for disambiguation

In programming languages, ambiguity comes from the precedence rules,
and we can resolve like in the example

In English, ambiguity is sometimes a problem:

︸ ︷︷ ︸︷ ︸︸ ︷
I look at

︷ ︸︸ ︷
the dogwith one eye︸ ︷︷ ︸

