Text Search and Closure Properties CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2015

Text Search

grep program

grep -E *regexp* file.txt

Searches for an occurrence of patterns matching a regular expression

cat 12	{cat, 12}	union
[abc]	$\{a,b,c\}$	shorthand for a b c
[ab][12]	$\{a1, a2, b1, b2\}$	concatenation
(ab)*	$\{arepsilon$, ab, abab, $\ldots\}$	star
[ab]?	$\{\varepsilon,a,b\}$	zero or one
(cat)+	$\{cat, catcat,\}$	one or more
[ab]{2}	$\{aa, ab, ba, bb\}$	n copies

Searching with grep

```
Words containing savor or savour cd /usr/share/dict/ grep -E 'savou?r' words
```

```
savor
 savor's
savored
savorier
savories
savoriest
savoring
 savors
 savory
savory's
unsavory
```

Searching with grep

Words containing savor or savour cd /usr/share/dict/ grep -E 'savou?r' words

savor savor's savored savorier savories savoriest savoring savors savory savory's unsavory Words with 5 consecutive a or b grep -E '[abAB]{5} words'

Babbage

More grep commands

	any symbol
[a-d]	anything in a range
^	beginning of line
\$	end of line

grep -E '^a.pl.\$' words

How do you look for

```
Words that start in go and have another go
               grep -E '^go.*go' words
             Words with at least ten vowels?
          grep -iE'([aeiouy].*){10}' words
               Words without any vowels?
            grep -iE '^[^aeiouv]*$' words
             [^R] means "does not contain"
             Words with exactly ten vowels?
grep -iE '^[^aeiouy]*([aeiouy][^aeiouy]*){10}$' words
```

How grep (could) work

output

Regular expression also supported in modern languages (C, Java, Python, etc)

accept/reject

finds pattern

Implementation of grep

How do you handle expressions like

[ab]?	ightarrow () [ab]	zero or more	$R? \to \varepsilon R$
(cat)+	ightarrow (cat)(cat)*	one or more	$R+ o RR^*$
a{3}	ightarrow aaa	n copies	$R\{n\} \to \underbrace{RR \dots R}_{n \text{ times}}$
[0.00]	2		tt times
[^aeiouy]	· ·	not containing	

Closure properties

Example

The language ${\cal L}$ of strings that end in 101 is regular

$$(0+1)^*101$$

How about the language \overline{L} of strings that do not end in 101?

Example

The language L of strings that end in 101 is regular

$$(0+1)^*101$$

How about the language \overline{L} of strings that do not end in 101?

Hint: a string does not end in 101 if and only if it ends in 000, 001, 010, 011, 100, 110 or 111 or has length 0, 1, or 2

So \overline{L} can be described by the regular expression $(0+1)^*(000+001+010+011+100+110+111)+\varepsilon+(0+1)+(0+1)(0+1)$

Complement

The complement \overline{L} of a language L contains those strings that are not in L

$$\overline{L} = \{w \in \Sigma^* \mid w \not\in L\}$$

Examples
$$(\Sigma = \{0, 1\})$$

 $L_1=$ all strings that end in 101

 $\overline{L_1}=$ all strings that do not end in 101

= all strings that end in 000, ..., 111 (but not 101) or have length 0, 1, or 2

$$L_2 = 1^* = \{\varepsilon, 1, 11, 111, \dots\}$$

 $\overline{L_2}=$ all strings that contain at least one 0

= language of the regular expression $(0+1)^*0(0+1)^*$

Example

The language L of strings that contain 101 is regular $(0+\underline{1})^*101(0+1)^*$ How about the language \overline{L} of strings that do not contain 101?

You can write a regular expression, but it is a lot of work!

Closure under complement

If L is a regular language, so is \overline{L}

To argue this, we can use any of the equivalent definitions of regular languages

The DFA definition will be the most convenient here We assume L has a DFA, and show \overline{L} also has a DFA

Arguing closure under complement

Suppose L is regular, then it has a DFA M

Now consider the DFA M^\prime with the accepting and rejecting states of M reversed

accepts strings not in ${\cal L}$

Can we do the same with an NFA?

Can we do the same with an NFA?

Intersection

The intersection $L\cap L'$ is the set of strings that are in both L and L'

Examples:			
L	L'	$L\cap L'$	
$(0+1)^*11$	1*	1*11	
L	L'	$L\cap L'$	
(0+1)*10	1*	Ø	

If L and L' are regular, is $L\cap L'$ also regular?

Closure under intersection

If L and L' are regular languages, so is $L \cap L'$

To argue this, we can use any of the equivalent definitions of regular languages

Suppose L and L' have DFAs, call them M and M' Goal: construct a DFA (or NFA) for $L\cap L'$

Example

 $L' = \operatorname{odd} \operatorname{number} \operatorname{of} \operatorname{1s}$

 ${\cal L}={\rm even}\ {\rm number}\ {\rm of}\ {\rm 0s}$

 $L\cap L'=$ even number of 0s and odd number of 1s

Example

 $L' = \operatorname{odd} \operatorname{number} \operatorname{of} \operatorname{1s}$

 $L={
m even\ number\ of\ 0s}$

 $L\cap L'=$ even number of 0s and odd number of 1s

Closure under intersection

	M and M^\prime	DFA for $L\cap L'$
states	$Q = \{r_1, \dots, r_s\}$ $Q' = \{s_1, \dots, s_m\}$	$Q \times Q' = \{(r_1, s_1), (r_1, s_2), \dots, (r_2, s_1), \dots, (r_n, s_m)\}$
start states	r_i for M s_j for M^\prime	(r_i, s_j)
accepting states	F for $MF^\prime for M^\prime$	$F \times F' = \{(r_i, s_j) \mid r_i \in F, s_j \in F'\}$

Whenever M is in state r_i and M' is in state s_j , the DFA for $L \cap L'$ will be in state (r_i, s_i)

Closure under intersection

Reversal

The reversal
$$w^R$$
 of a string w is w written backwards
$$w = \mathrm{dog} \qquad w^R = \mathrm{god}$$

The reversal ${\cal L}^R$ of a language ${\cal L}$ is the language obtained by reversing all its strings

$$L = \{ \mathsf{dog}, \mathsf{war}, \mathsf{level} \} \qquad L^R = \{ \mathsf{god}, \mathsf{raw}, \mathsf{level} \}$$

Reversal of regular languages

$$L={
m all}$$
 strings that end in 001 is regular $({
m 0}+{
m 1})^*{
m 001}$

How about L^R ?

This is the language of all strings beginning in 100 It is regular and represented by $100(0+1)^*$

Closure under reversal

Arguing closure under reversal

Take a regular expression ${\cal E}$ for ${\cal L}$

We will show how to reverse ${\cal E}$

A regular expression can be of the following types:

- ightharpoonup special symbol \emptyset and ε
- alphabet symbols like a and b
- union, concatenation, or star of simpler expressions

Proof of closure under reversal

Regular expression ${\cal E}$	${\it reversal}\ E^R$
Ø	Ø
arepsilon	arepsilon
a	a
$E_1 + E_2$	$E_1^R + E_2^R$
E_1E_2	$E_2^R E_1^R$
E_1^*	$(E_1^R)^*$

Duplication?

$$L^{\text{DUP}} = \{ww \mid w \in L\}$$

$$Example: \\ L = \{\text{cat}, \text{dog}\} \\ L^{\text{DUP}} = \{\text{catcat}, \text{dogdog}\}$$

If L is regular, is $L^{\rm DUP}$ also regular?

Let's try regular expression

$$L^{\rm DUP}\stackrel{?}{=}L^2$$

Let's try NFA

An example

```
\begin{split} L &= \text{language of 0*1} \qquad (L \text{ is regular}) \\ L &= \{1, 01, 001, 0001, \dots\} \\ L^{\text{DUP}} &= \{11, 0101, 001001, 00010001, \dots\} \\ &= \{0^n 10^n 1 \mid n \geqslant 0\} \end{split}
```

Let's design an NFA for $L^{\rm DUP}$

An example

$$L^{\text{DUP}} = \{11,0101,001001,00010001,\dots\}$$

$$= \{0^n 10^n 1 \mid n \geqslant 0\}$$

$$0 0 0 0 0 0 \cdots$$

$$1 01 0001 00001$$

An example

$$L^{\text{DUP}} = \{11,0101,001001,00010001,\dots\}$$

$$= \{0^n 10^n 1 \mid n \geqslant 0\}$$

$$\downarrow 1 \qquad \downarrow 1 \qquad \downarrow 1 \qquad \downarrow 1$$

$$\downarrow 1 \qquad \downarrow 1 \qquad \downarrow 1 \qquad \downarrow 1$$

$$\downarrow 1 \qquad \downarrow 01 \qquad \downarrow 001 \qquad \downarrow 0001$$

Seems to require infinitely many states!

Next lecture: will show that languages like $L^{\rm DUP}$ are not regular

Backreferences in grep

Advanced feature in grep and other "regular expression" libraries

the special expression \1 refers to the substring specified by (.*)

(.*)\1 looks for a repeated substring, e.g. mama

^(.*)\1\$ accepts the language L^{DUP}

Standard "regular expression" libraries can accept irregular languages (as defined in this course)!