Text Search and Closure Properties
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2015

Text Search

grep program

grep -E regexp file.txt

Searches for an occurrence of patterns matching a regular expression

cat|12
[abc]
[ab][12]
(ab)”
[ab]?
(cat)+
[ab]{2}

{cat, 12}
{a, b, c}
{a1, a2, b1, b2}
{e, ab, abab, ...}
{e,a, b}

{cat, catcat, ...}
{aa, ab, ba, bb}

union

shorthand for a|b|c
concatenation
star

Zero or one

one or more

7, copies

Searching with grep

Words containing savor or savour
cd /usr/share/dict/
grep -E ’savou?r’ words

savor
savor’s
savored
savorier
savories
savoriest
savoring
savors
savory
savory’s
unsavory

Searching with grep

Words containing savor or savour
cd /usr/share/dict/

grep -E ’savou?r’ words

savor
savor’s
savored
savorier
savories
savoriest
savoring
savors
savory
savory’s
unsavory

Words with 5 consecutive a or b
grep -E ’[abAB]{5} words’

Babbage

More grep commands

. any symbol

[a-d] | anythinginarange
A beginning of line

$ end of line

grep -E ’7*a.pl.$’ words

How do you look for

Words that start in go and have another go

grep -E ’~go.*go’ words

Words with at least ten vowels?
grep -iE’([aeiouy].*){10}’ words

Words without any vowels?
grep -iE ’~[*aelouy]*$’ words
[~R] means “does not contain”

Words with exactly ten vowels?
grep -iE ’~[”aeiouy]*([aeiouy][”aetiouy]*){10}$’ words

How grep (could) work

regular
expression mm—p- NFA smmmp- DFA
input
differences in class in grep
[ab]?, a+, (cat){3} notallowed allowed
input handling matches whole looks for pattern
output accept/reject finds pattern

Regular expression also supported in modern languages (C, Java, Python,
etc)

Implementation of grep

How do you handle expressions like

[ab]? — ()][ab] zero or more R? = ¢|R
(cat)+ — (cat)(cat)* oneormore R+ — RR*
3 i .
a{3} — aaa n copies R{n} — RR. R
n times
[~aetouy] | ? not containing

Closure properties

Example

The language L of strings that end in 101 is regular
(04 1)*101

How about the language L of strings that do not end in 101?

Example

The language L of strings that end in 101 is regular
(04 1)*101
How about the language L of strings that do not end in 101?
Hint: a string does not end in 101 if and only if it ends in
000, 001, 010, 011, 100, 110 or 111

or haslength 0,1, 0r2

So L can be described by the regular expression
(0+1)*(000+001+010+011+100+110+111)+e+(0+1)+(0+1)(0+1)

Complement

The complement L of a language L contains those strings that are notin L

L={weX*|w¢lL}

Examples (X ={0,1})

L; = all strings that end in 101
L1 = all strings that do not end in 101
= all strings that end in 000, ..., 111 (but not 101)
or have length 0, 1, or 2

Ly =1" ={e,1,11,111,... }
Lo = all strings that contain at least one 0

= language of the regular expression (0 + 1)*0(0 + 1)*

Example

The language L of strings that contain 101 is regular
(0+1)*101(0 + 1)*
How about the language L of strings that do not contain 101?

You can write a regular expression, but it is a lot of work!

Closure under complement

If L is a regular language, so is L

To argue this, we can use any of the equivalent definitions of regular
languages

regular
expression

= NA <€ DFA

The DFA definition will be the most convenient here
We assume L has a DFA, and show L also has a DFA

Arguing closure under complement

Suppose L is regular, then it has a DFA M

o=
HCK&/@;; secepts

Now consider the DFA M’ with the accepting and rejecting states of M
reversed

%QQ accepts strings notin L

Can we do the same with an NFA?

0,1
SOSOSO N
0,1

3

¥oYor0

Can we do the same with an NFA?

0,1
H& 0+ 11

0,1

(0+1)*

H 1 0 Not the complement!

Intersection

The intersection L N L’ is the set of strings that are in both L and L’

Examples:
L L Lnr
(0+1)*11 1* 111
L L Lnr
(0+1)*10 1* 0

If Land L' are regular,is L N L’ also regular?

Closure under intersection

If L and L' are regular languages, sois L N L'

To argue this, we can use any of the equivalent definitions of regular
languages

regular
expression

= NA -<€mPp DFA

Suppose L and L’ have DFAs, call them M and M’
Goal: construct a DFA (or NFA) for L N L/

Example

L' = odd number of 1s
M 0 0

(D)
1

L = even number of 0s

LN L' = even number of 0s and odd number of 1s

Example

L' = odd number of 1s
M 0 0

L = even number of 0s

LN L' = even number of 0s and odd number of 1s

Closure under intersection

M and M’ DFAfor LN L/
states Q={r,...,rs} Qx Q ={(r1,s1), (r1, s2),
Q ={s1,---ysm} -, (12,81)s -, (Tny Sm)}
startstates 1 for M (i, 55)
s; for M’
accepting Ffor M FxF =
states F' for M’ {(ri,s;) | i€ F,s; € F'}

Whenever M is in state r; and M is in state sj,the DFAfor L N L' will bein
state (73, s;)

Closure under intersection

M and M’ DFAfor LN L/

transitions C) a_ @ @

——

Reversal

The reversal w of a string w is w written backwards
w = dog wh = god

The reversal L% of a language L is the language obtained by reversing all
its strings
L = {dog, war, level} L® = {god, raw, level}

Reversal of regular languages

L = all strings that end in 001 is regular
(04 1)*001

How about L#?
This is the language of all strings beginning in 100

Itis regular and represented by
100(0 4 1)*

Closure under reversal

If Lis a regular language, so is L

How do we argue?

= NA -<€mPp- DFA

regular
expression

Arguing closure under reversal

Take a regular expression E for L
We will show how to reverse I/

A regular expression can be of the following types:
» special symbol () and e
» alphabet symbols like aand b

> union, concatenation, or star of simpler expressions

Proof of closure under reversal

Regular expression £/ reversal Bt
0 0

€ €

a a

Ei+ By ER + EE
E\E, EREE

Ef (Ef)*

Duplication?

Example:
LPY = {ww | w € L} L = {cat, dog}
LPY? = {catcat, dogdog}

If L is regular, is L°YP also regular?

Attempts

Let’s try regular expression

Jpup L 2

Attempts

Let’s try regular expression
L ={a,b}
JPURXE 2 LPY" = {aa, bb}
LL = {aa, ab, ba, bb}

Attempts

Let’s try regular expression
L ={a,b}
JPURXE 2 LPY" = {aa, bb}
LL = {aa, ab, ba, bb}

Let’s try NFA

H‘—5>\ NFA for L | >[NFAfor L }—5>

Attempts

Let’s try regular expression
L ={a,b}
JPURXE 2 LPY" = {aa, bb}
LL = {aa, ab, ba, bb}

Let’s try NFA

H‘—g’»\ NFA for/>/%\FA for I, }—5>

An example

L = language of 01 (L is regular)
L ={1,01,001,0001, ...}
LPY = {11,0101, 001001, 00010001, . . . }
={0"10"1| n > 0}

Let’s design an NFA for LPUP

An example

LPY = {11,0101, 001001, 00010001, . . . }
={0"10"1| n > 0}

Y
2 o o o

ONONONO

An example

LPY" = {11,0101, 001001, 00010001, . .. }
={0"10"1| n > 0}

Y
2 o o o

ONONONO

Seems to require infinitely many states!

Next lecture: will show that languages like LPY? are not regular

Backreferences in grep

Advanced feature in grep and other “regular expression” libraries
grep -E ’~(.*)\1$’ words

the special expression \1 refers to the substring specified by (.*)
(.*)\1 looks for a repeated substring, e.g. mama

A(.*)\1$ accepts the language LPYP

Standard “regular expression” libraries can accept irregular languages (as
defined in this course)!

