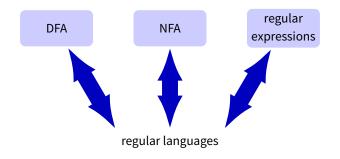
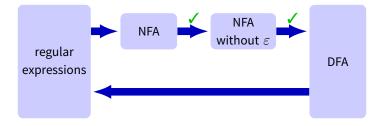

Equivalence of DFA and Regular Expressions CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

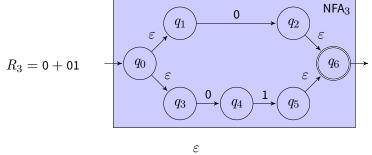

Chinese University of Hong Kong

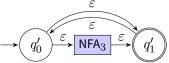
Fall 2015

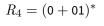

Three ways of doing it

They are equally powerful

Roadmap

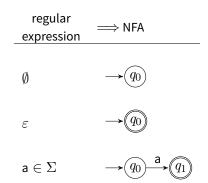



Examples: regular expression \rightarrow NFA

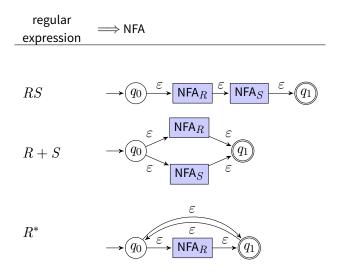

$$R_1 = \mathbf{0} \quad \xrightarrow{\mathbf{0}} \underbrace{q_0} \underbrace{\mathbf{0}} \underbrace{\mathbf{0}} \underbrace{q_1}$$

$$R_2 = \mathbf{01} \longrightarrow \begin{array}{c} \mathbf{0} \\ \mathbf{$$

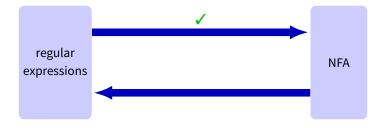
Examples: regular expression \rightarrow NFA

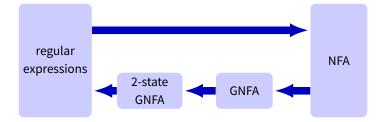


In general, how do we convert a regular expression to an NFA?

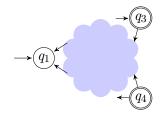

A regular expression over Σ is an expression formed by the following rules

- The symbols \emptyset and ε are regular expressions
- Every a in Σ is a regular expression
- ▶ If *R* asd *S* are regular expressions, so are *R* + *S*, *RS* and *R*^{*}

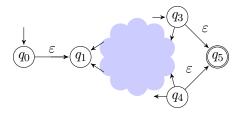

General method

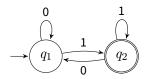

General method

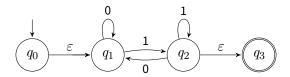
Roadmap



Roadmap


First we simplify the NFA so that

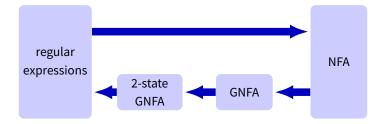

- It has exactly one accepting state
- No arrows come into the start state
- No arrows go out of the accepting state



First we simplify the NFA so that

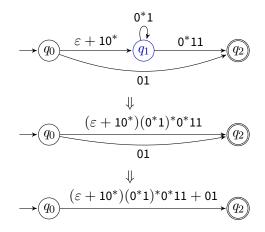
- It has exactly one accepting state
- No arrows come into the start state
- No arrows go out of the accepting state



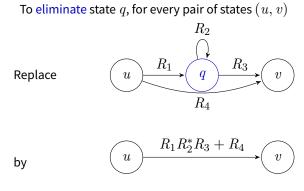


- ► It has exactly one accepting state ✓
- No arrows come into the start state
- No arrows go out of the accepting state

A generalized NFA is an NFA whose transitions are labeled by regular expressions, like

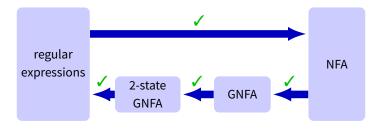


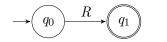
GNFA state elimination



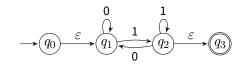
We will eliminate every state but the start and accepting states

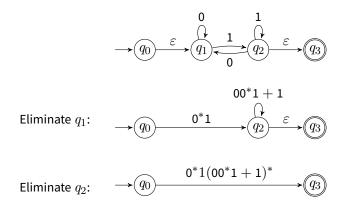
State elimination



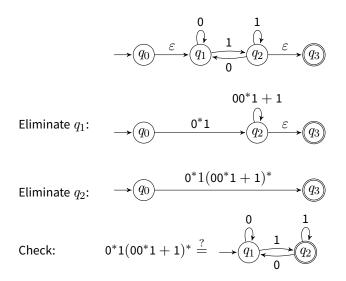

State elimination: general method

Remember to do this even when u = v

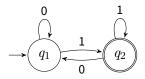

Roadmap


A 2-state GNFA is the same as a regular expression ${\cal R}$

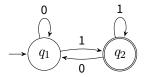
Conversion example



Eliminate q_1 :


Conversion example

Conversion example



Check your answer!

All strings ending in 1 $(0+1)^*1$

Check your answer!

All strings ending in 1 $(0+1)^*1$

$$0^{*}1(00^{*}1+1)^{*}$$

Always ends in 1

 $= 0^* 1 (0^* 1)^*$

Does every string ending in 1 have this form?

Yes