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DFAs and NFAS are equally powerful

NFA can do everything a DFA can do
How about the other way?

Every NFA can be converted into a DFA for the same language



NFA — DFA in two easy steps

1. Eliminate e-transitions

2. Convert simplified NFA to DFA
We will do this first



NFA — DFA: intuition
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NFA — DFA: states
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DFA has a state for every subset of NFA states




NFA — DFA: transitions
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DFA has a state for every subset of NFA states



NFA — DFA: accepting states
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DFA accepts if it contains an NFA accepting state



NFA — DFA: eliminate unreachable states
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At the end, you may eliminate unreachable states



General conversion
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NFA — DFA in two easy steps

1. Eliminate e-transitions
2. Convert simplified NFAto DFA v



Eliminating e-transitions
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Accepting states: ¢2, q1, qo



Eliminating e-transitions
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Eliminating e-transitions

Paths with ’s are replaced with a single transition
b e
+ > i)

States that can reach accepting state by ¢ are all accepting




Regular expressions



String concatenation

s = abb
t = bab

st = abbbab
ts = bababb
ss = abbabb

sst = abbabbbab

16/30



Operations on languages

» Concantenation of languages L; and Lo
LiLy={st:s€ L, te Ly}
> n-th power of language L
L™ ={s182...5, | s1,82,...,8, € L}
» Unionof L1 and Loy

L1UL2={S’SEL10I‘S€L2}



Example

Ly = {o,01} Ly ={e,1,11,111,...}

Ly Ly = {o0,01,011,0111,... } U {01,011,0111,01111,...}
= {0,01,011,0111,...}

0 followed by any number of 1s

L? = {00,001, 010, 0101} Ly =1Ly
Ly =Ly foranyn >1

Ly U Ly ={0,01,¢,1,11,111,... }



Operations on languages

The star of L are contains strings made up of zero or more chunks from L

*=I1°UrLlltul?uU...

Example: L1 = {0,01}and Ly = {e,1,11,111,... }
Whatis L7?  L3?



Example

L) = {0, 01}

L = {e}

Li = {o,01}

L? = {00, 001, 010, 0101}

L3 = {000, 0001, 0010, 00101, 0100, 01001, 01010, 010101}

Which of the following are in L}?
00100001 00110001 10010001
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Example

L) = {0, 01}

L = {e}

Li = {o,01}

L? = {00, 001, 010, 0101}

L3 = {000, 0001, 0010, 00101, 0100, 01001, 01010, 010101}

Which of the following are in L}?
00100001 00110001 10010001

Yes No No

L7 contains all strings such that any 1 is preceded by a 0



Example

Ly ={g,1,11,111,...}
any number of 1s

Ly = {e}
LY = I,
L3 = Ly

=1Ly, (n>1)



Example

Ly ={g,1,11,111,...}
any number of 1s

Ly=IL3ULiuLdu...

LY =

2 = {e} ={e}ULyULU...
1 _

L3 = Ly

5 =



Combining languages

We can construct languages by starting with simple ones, like {0} and {1},
and combining them

{oy({o} U {1})” = 0(0+1)"

all strings that start with 0



Combining languages

We can construct languages by starting with simple ones, like {0} and {1},
and combining them

{oy({o} U {1})” = 0(0+1)"

all strings that start with 0

(foH{1}) U ({1}{o}*) = o017+ 10
0 followed by any number of 1s, or
1 followed by any number of 0s



Combining languages

We can construct languages by starting with simple ones, like {0} and {1},
and combining them

{oy({o} U {1})” = 0(0+1)"

all strings that start with 0

(foH{1}) U ({1}{o}*) = o017+ 10
0 followed by any number of 1s, or
1 followed by any number of 0s

0(0 4 1)* and 01* + 10" are regular expressions
Blueprints for combining simpler languages into complex ones



Syntax of regular expressions

Aregular expression over Y is an expression formed by the following rules
» The symbols () and ¢ are regular expressions
> Everyain X isaregularexpression

> If Rasd S are regular expressions, soare R + S, RS and R*

Examples:
0 £
0(0 + 1)* 1*(e 4 0)
01* + 10% (0+1)%01(0 4 1)*

Alanguage is regular if it is represented by a regular expression



Understanding regular expressions

2 ={0,1}

01* = 0(1)* represents {0, 01,011, 0111, . ..

0 followed by any number of 1s

01*isnot (01)*



Understanding regular expressions

0 + lyields {0, 1} strings of length 1
(0 + 1)*yields {¢,0,1,00,01,10,11,... } any string
(0+1)*010 any string that ends in 010

(0+1)*01(0+1)* any string containing 01



Understanding regular expressions

What is the following language?
((0+1)(0+1))"+((0+1)(0+1)(0+1))"
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Understanding regular expressions

What is the following language?
((0+1)(0+1))"+((0+1)(0+1)(0+1))"
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strings of even length strings whose length is a
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Understanding regular expressions

What is the following language?
((0+1)(04+1))"+((0+1)(0+1)(0+1))*
strings whose length is even or a multiple of 3
=strings of length 0, 2, 3,4, 6,8,9,10,12, ...

((0+1)(041))* ((04+1)(04+1)(0+1))*
strings of even length strings whose length is a
multiple of 3
(0+1)(0+1) (0+1)(0+1)(0+1)

strings of length 2 strings of length 3
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Understanding regular expressions

What is the following language?
(0+1)(0+1)+(0+1)(0+1)(041))*

(0+1)(04+1)+(0+1)(0+1)(0+1)
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Understanding regular expressions

What is the following language?
(0+1)(0+1)+(0+1)(0+1)(041))*

(0+1)(0+1)+(0+1)(0+1)(0+1)
strings of length 2 or 3

(0+1)(0+1) (0+1)(0+1)(0+1)
strings of length 2 strings of length 3



Understanding regular expressions

What is the following language?
(0+1)(0+1)+(0+1)(0+1)(041))*
strings that can be broken into blocks, where each block has length 2 or 3

(0+1)(0+1)+(0+1)(0+1)(0+1)
strings of length 2 or 3

(0+1)(0+1) (0+1)(0+1)(0+1)
strings of length 2 strings of length 3



Understanding regular expressions

What is the following language?
(0+1)(0+1)+(O+1)(0+1)(0+1))*
strings that can be broken into blocks, where each block has length 2 or 3

Which are in the language?
£ 1 01 011 00110 011010110



Understanding regular expressions

What is the following language?
(0+1)(0+1)+(O+1)(0+1)(0+1))*
strings that can be broken into blocks, where each block has length 2 or 3

Which are in the language?

01 011 00110 011010110
v X v v v 4

()
-

The regular expression represents all strings except 0 and 1



Understanding regular expressions

What is the following language?

(14014 001)" (¢ + 0+ 00)



Understanding regular expressions

What is the following language?

ends in at most two 0s

——
(14 01+ 001)* (¢4 0+ 00)



Understanding regular expressions

What is the following language?

ends in at most two 0s

,—/h
(14 01+ 001)* (£ 4 0+ 00)
|

at most two 0s between two consecutive 1s

Never three consecutive 0s

The regular expression represents strings not containing 000

Examples:

€ 00 01100101110 0010010



Writing regular expressions

Write a regular expression for all strings with two consecutive 0s



Writing regular expressions

Write a regular expression for all strings with two consecutive 0s

(anything)00(anything)

(0+1)*00(0 + 1)*



