
1/30

NFA to DFA conversion and regular expressions
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2015



2/30

DFAs and NFAS are equally powerful

NFA can do everything a DFA can do
How about the other way?

Every NFA can be converted into a DFA for the same language



3/30

NFA→ DFA in two easy steps

1. Eliminate ε-transitions

2. Convert simplified NFA to DFA
We will do this first



4/30

NFA→ DFA: intuition

NFA q0 q1 q21 0

0,1

DFA q0 q0 or q1 q0 or q21
0

0 1

1

0



5/30

NFA→ DFA: intuition

NFA q0 q1 q21 0

0,1

DFA q0 {q0, q1} {q0, q2}
1

0

0 1

1

0



6/30

NFA→ DFA: states

NFA q0 q1 q21 0

0,1

DFA

∅ {q1}

{q0}

{q2}

{q0, q1}

{q0, q2}

{q1, q2}

{q0, q1, q2}

1

DFA has a state for every subset of NFA states



7/30

NFA→ DFA: transitions

NFA q0 q1 q21 0

0,1

DFA

∅ {q1}

{q0}

{q2}

{q0, q1}

{q0, q2}

{q1, q2}

{q0, q1, q2}

0,1

0

1

0

1

1
0 1

01

0
0,1

0

1

DFA has a state for every subset of NFA states



8/30

NFA→ DFA: accepting states

NFA q0 q1 q21 0

0,1

DFA

∅ {q1}

{q0}

{q2}

{q0, q1}

{q0, q2}

{q1, q2}

{q0, q1, q2}

0,1

0

1

0

1

1
0 1

01

0
0,1

0

1

DFA accepts if it contains an NFA accepting state



9/30

NFA→ DFA: eliminate unreachable states

NFA q0 q1 q21 0

0,1

DFA

∅ {q1}

{q0}

{q2}

{q0, q1}

{q0, q2}

{q1, q2}

{q0, q1, q2}

0

1

0

1

1
0

1

At the end, youmay eliminate unreachable states



10/30

General conversion

NFA DFA
states q0, q1, . . . , qn ∅, {q0}, {q1}, {q0, q1}, . . . ,

{q0, . . . , qn}
one for each subset of states

initial state q0 {q0}
transitions δ δ′({qi1 , . . . , qik}, a) =

δ(qi1 , a) ∪ · · · ∪ δ(qik , a)
accepting F ⊆ Q F ′ = {S | S contains some state inF}
states



11/30

NFA→ DFA in two easy steps

1. Eliminate ε-transitions

2. Convert simplified NFA to DFA 3



12/30

Eliminating ε-transitions

NFA: q0 q1 q2
ε,1

0

0

ε

NFA without ε’s:

0 1
q0 {q0, q1, q2} {q1, q2}
q1 {q0, q1, q2} ∅
q2 ∅ ∅

Accepting states: q2, q1, q0



13/30

Eliminating ε-transitions

NFA: q0 q1 q2
ε,1

0

0

ε

new NFA:

0 1
q0 {q0, q1, q2} {q1, q2}
q1 {q0, q1, q2} ∅
q2 ∅ ∅

q0 q1 q2
0,1

00

0 0

0

0,1



14/30

Eliminating ε-transitions

Paths with ε’s are replaced with a single transition

q5 q0 q2 q0 q3ε a ε ε

q5 q3a
q3

q5

q4

ε

a

ε

q3

a

States that can reach accepting state by ε are all accepting

q9 q7 q3 q2ε ε

ε



15/30

Regular expressions



16/30

String concatenation

s = abb
t = bab

st = abbbab
ts = bababb
ss = abbabb
sst = abbabbbab

s = x1 . . . xn, t = y1 . . . ym
⇓

st = x1 . . . xny1 . . . ym



17/30

Operations on languages

I Concantenation of languagesL1 andL2

L1L2 = {st : s ∈ L1, t ∈ L2}

I n-th power of languageL

Ln = {s1s2 . . . sn | s1, s2, . . . , sn ∈ L}

I Union ofL1 andL2

L1 ∪ L2 = {s | s ∈ L1 or s ∈ L2}



18/30

Example

L1 = {0, 01} L2 = {ε, 1, 11, 111, . . . }

L1L2 = {0, 01, 011, 0111, . . . } ∪ {01, 011, 0111, 01111, . . . }
= {0, 01, 011, 0111, . . . }

0 followed by any number of 1s

L2
1 = {00, 001, 010, 0101} L2

2 = L2

Ln
2 = L2 for any n > 1

L1 ∪ L2 = {0, 01, ε, 1, 11, 111, . . . }



19/30

Operations on languages

The star ofL are contains strings made up of zero or more chunks fromL

L∗ = L0 ∪ L1 ∪ L2 ∪ . . .

Example: L1 = {0, 01} andL2 = {ε, 1, 11, 111, . . . }
What isL∗

1? L∗
2?



20/30

Example

L1 = {0, 01}

L0
1 = {ε}

L1
1 = {0, 01}

L2
1 = {00, 001, 010, 0101}

L3
1 = {000, 0001, 0010, 00101, 0100, 01001, 01010, 010101}

Which of the following are inL∗
1?

00100001

Yes

00110001

No

10010001

No

L∗
1 contains all strings such that any 1 is preceded by a 0



20/30

Example

L1 = {0, 01}

L0
1 = {ε}

L1
1 = {0, 01}

L2
1 = {00, 001, 010, 0101}

L3
1 = {000, 0001, 0010, 00101, 0100, 01001, 01010, 010101}

Which of the following are inL∗
1?

00100001
Yes

00110001
No

10010001
No

L∗
1 contains all strings such that any 1 is preceded by a 0



20/30

Example

L1 = {0, 01}

L0
1 = {ε}

L1
1 = {0, 01}

L2
1 = {00, 001, 010, 0101}

L3
1 = {000, 0001, 0010, 00101, 0100, 01001, 01010, 010101}

Which of the following are inL∗
1?

00100001
Yes

00110001
No

10010001
No

L∗
1 contains all strings such that any 1 is preceded by a 0



21/30

Example

L2 = {ε, 1, 11, 111, . . . }
any number of 1s

L0
2 = {ε}

L1
2 = L2

L2
2 = L2

Ln
2 = L2 (n > 1)

L∗
2 = L0

2 ∪ L1
2 ∪ L2

2 ∪ . . .

= {ε} ∪ L2 ∪ L2 ∪ . . .

= L2

L∗
2 = L2



21/30

Example

L2 = {ε, 1, 11, 111, . . . }
any number of 1s

L0
2 = {ε}

L1
2 = L2

L2
2 = L2

Ln
2 = L2 (n > 1)

L∗
2 = L0

2 ∪ L1
2 ∪ L2

2 ∪ . . .

= {ε} ∪ L2 ∪ L2 ∪ . . .

= L2

L∗
2 = L2



22/30

Combining languages

We can construct languages by starting with simple ones, like {0} and {1},
and combining them

{0}({0} ∪ {1})∗ ⇒ 0(0+ 1)∗

all strings that start with 0

({0}{1}∗) ∪ ({1}{0}∗) ⇒ 01∗ + 10∗

0 followed by any number of 1s, or
1 followed by any number of 0s

0(0+ 1)∗ and 01∗ + 10∗ are regular expressions
Blueprints for combining simpler languages into complex ones



22/30

Combining languages

We can construct languages by starting with simple ones, like {0} and {1},
and combining them

{0}({0} ∪ {1})∗ ⇒ 0(0+ 1)∗

all strings that start with 0

({0}{1}∗) ∪ ({1}{0}∗) ⇒ 01∗ + 10∗

0 followed by any number of 1s, or
1 followed by any number of 0s

0(0+ 1)∗ and 01∗ + 10∗ are regular expressions
Blueprints for combining simpler languages into complex ones



22/30

Combining languages

We can construct languages by starting with simple ones, like {0} and {1},
and combining them

{0}({0} ∪ {1})∗ ⇒ 0(0+ 1)∗

all strings that start with 0

({0}{1}∗) ∪ ({1}{0}∗) ⇒ 01∗ + 10∗

0 followed by any number of 1s, or
1 followed by any number of 0s

0(0+ 1)∗ and 01∗ + 10∗ are regular expressions
Blueprints for combining simpler languages into complex ones



23/30

Syntax of regular expressions

A regular expression overΣ is an expression formed by the following rules
I The symbols ∅ and ε are regular expressions
I Every a inΣ is a regular expression
I IfR asd S are regular expressions, so areR + S ,RS andR∗

Examples:
∅

0(0+ 1)∗

01∗ + 10∗

ε
1∗(ε+ 0)

(0+ 1)∗01(0+ 1)∗

A language is regular if it is represented by a regular expression



24/30

Understanding regular expressions

Σ = {0, 1}

01∗ = 0(1)∗ represents {0, 01, 011, 0111, . . . }
0 followed by any number of 1s

01∗ is not (01)∗



25/30

Understanding regular expressions

0+ 1 yields {0, 1} strings of length 1

(0+ 1)∗ yields {ε, 0, 1, 00, 01, 10, 11, . . . } any string

(0+ 1)∗010 any string that ends in 010

(0+ 1)∗01(0+ 1)∗ any string containing 01



26/30

Understanding regular expressions

What is the following language?
((0+ 1)(0+ 1))∗ + ((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is even or a multiple of 3
= strings of length 0, 2, 3, 4, 6, 8, 9, 10, 12, . . .

((0+ 1)(0+ 1))∗

strings of even length

(0+ 1)(0+ 1)
strings of length 2

((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is a
multiple of 3

(0+ 1)(0+ 1)(0+ 1)
strings of length 3



26/30

Understanding regular expressions

What is the following language?
((0+ 1)(0+ 1))∗ + ((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is even or a multiple of 3
= strings of length 0, 2, 3, 4, 6, 8, 9, 10, 12, . . .

((0+ 1)(0+ 1))∗

strings of even length

(0+ 1)(0+ 1)
strings of length 2

((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is a
multiple of 3

(0+ 1)(0+ 1)(0+ 1)
strings of length 3



26/30

Understanding regular expressions

What is the following language?
((0+ 1)(0+ 1))∗ + ((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is even or a multiple of 3
= strings of length 0, 2, 3, 4, 6, 8, 9, 10, 12, . . .

((0+ 1)(0+ 1))∗

strings of even length

(0+ 1)(0+ 1)

strings of length 2

((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is a
multiple of 3

(0+ 1)(0+ 1)(0+ 1)

strings of length 3



26/30

Understanding regular expressions

What is the following language?
((0+ 1)(0+ 1))∗ + ((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is even or a multiple of 3
= strings of length 0, 2, 3, 4, 6, 8, 9, 10, 12, . . .

((0+ 1)(0+ 1))∗

strings of even length

(0+ 1)(0+ 1)
strings of length 2

((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is a
multiple of 3

(0+ 1)(0+ 1)(0+ 1)
strings of length 3



26/30

Understanding regular expressions

What is the following language?
((0+ 1)(0+ 1))∗ + ((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is even or a multiple of 3
= strings of length 0, 2, 3, 4, 6, 8, 9, 10, 12, . . .

((0+ 1)(0+ 1))∗

strings of even length

(0+ 1)(0+ 1)
strings of length 2

((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is a
multiple of 3

(0+ 1)(0+ 1)(0+ 1)
strings of length 3



26/30

Understanding regular expressions

What is the following language?
((0+ 1)(0+ 1))∗ + ((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is even or a multiple of 3
= strings of length 0, 2, 3, 4, 6, 8, 9, 10, 12, . . .

((0+ 1)(0+ 1))∗

strings of even length

(0+ 1)(0+ 1)
strings of length 2

((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is a
multiple of 3

(0+ 1)(0+ 1)(0+ 1)
strings of length 3



27/30

Understanding regular expressions

What is the following language?
((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2 or 3

(0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1)
strings of length 2 or 3

(0+ 1)(0+ 1)
strings of length 2

(0+ 1)(0+ 1)(0+ 1)
strings of length 3



27/30

Understanding regular expressions

What is the following language?
((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2 or 3

(0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1)

strings of length 2 or 3

(0+ 1)(0+ 1)
strings of length 2

(0+ 1)(0+ 1)(0+ 1)
strings of length 3



27/30

Understanding regular expressions

What is the following language?
((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2 or 3

(0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1)

strings of length 2 or 3

(0+ 1)(0+ 1)

strings of length 2

(0+ 1)(0+ 1)(0+ 1)

strings of length 3



27/30

Understanding regular expressions

What is the following language?
((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2 or 3

(0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1)

strings of length 2 or 3

(0+ 1)(0+ 1)
strings of length 2

(0+ 1)(0+ 1)(0+ 1)
strings of length 3



27/30

Understanding regular expressions

What is the following language?
((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2 or 3

(0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1)
strings of length 2 or 3

(0+ 1)(0+ 1)
strings of length 2

(0+ 1)(0+ 1)(0+ 1)
strings of length 3



27/30

Understanding regular expressions

What is the following language?
((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2 or 3

(0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1)
strings of length 2 or 3

(0+ 1)(0+ 1)
strings of length 2

(0+ 1)(0+ 1)(0+ 1)
strings of length 3



28/30

Understanding regular expressions

What is the following language?
((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2 or 3

Which are in the language?

ε

3

1

7

01

3

011

3

00110

3

011010110

3

The regular expression represents all strings except 0 and 1



28/30

Understanding regular expressions

What is the following language?
((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2 or 3

Which are in the language?

ε
3

1
7

01
3

011
3

00110
3

011010110
3

The regular expression represents all strings except 0 and 1



29/30

Understanding regular expressions

What is the following language?

(1+ 01+ 001)∗︸ ︷︷ ︸
at most two 0s between two consecutive 1s

ends in at most two 0s︷ ︸︸ ︷
(ε+ 0+ 00)

Never three consecutive 0s

The regular expression represents strings not containing 000

Examples:

ε 00 0110010110 0010010



29/30

Understanding regular expressions

What is the following language?

(1+ 01+ 001)∗︸ ︷︷ ︸
at most two 0s between two consecutive 1s

ends in at most two 0s︷ ︸︸ ︷
(ε+ 0+ 00)

Never three consecutive 0s

The regular expression represents strings not containing 000

Examples:

ε 00 0110010110 0010010



29/30

Understanding regular expressions

What is the following language?

(1+ 01+ 001)∗︸ ︷︷ ︸
at most two 0s between two consecutive 1s

ends in at most two 0s︷ ︸︸ ︷
(ε+ 0+ 00)

Never three consecutive 0s

The regular expression represents strings not containing 000

Examples:

ε 00 0110010110 0010010



30/30

Writing regular expressions

Write a regular expression for all strings with two consecutive 0s

(anything)00(anything)

(0+ 1)∗00(0+ 1)∗



30/30

Writing regular expressions

Write a regular expression for all strings with two consecutive 0s

(anything)00(anything)

(0+ 1)∗00(0+ 1)∗


