NFA to DFA conversion and regular expressions
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2015

DFAs and NFAS are equally powerful

NFA can do everything a DFA can do
How about the other way?

Every NFA can be converted into a DFA for the same language

NFA — DFA in two easy steps

1. Eliminate e-transitions

2. Convert simplified NFA to DFA
We will do this first

NFA — DFA: intuition

0,1
" L O

0 1

DFA — qo or q1 do or g2

NFA — DFA: intuition

0,1
NFA 8 1 . 0

0 1

NFA — DFA: states

0,1
NFA 8 1 . 0

{0, 01, @}
DFA

DFA has a state for every subset of NFA states

NFA — DFA: transitions

0,1
NFA 8 1 . 0

Ao s
Roos

DFA has a state for every subset of NFA states

NFA — DFA: accepting states

NFA 81.0

DFA accepts if it contains an NFA accepting state

NFA — DFA: eliminate unreachable states

0,1
NFA 8 1 . 0

, ‘
s 1
0 0 1 0

DFA

At the end, you may eliminate unreachable states

General conversion

NFA DFA
states @ a1, a0 O, {ao} {at {aw, i}, -,
{q07 C) Qn}
one for each subset of states
initial state o {0}
transitions 0 ({4}, a) =
5(qi17 CL) U---u 5(q7«k7 CL)
accepting F C @ F"'= {8 | S contains some state in F'}

states

NFA — DFA in two easy steps

1. Eliminate e-transitions
2. Convert simplified NFAto DFA v

Eliminating e-transitions

0
&1
0

NFA without €’s:
| 0 1
o | {900, e} {0, e}

a1 | {9, a1, @2} 0
@ U] 0

Accepting states: ¢2, q1, qo

Eliminating e-transitions

0
sl
0

| 0 1

new NFA: {Qquh(D} {(J1,Q2}
. {QOv(IlaQQ} 0

0 0

Eliminating e-transitions

Paths with ’s are replaced with a single transition
b e
+ > i)

States that can reach accepting state by ¢ are all accepting

Regular expressions

String concatenation

s = abb
t = bab

st = abbbab
ts = bababb
ss = abbabb

sst = abbabbbab

16/30

Operations on languages

» Concantenation of languages L; and Lo
LiLy={st:s€ L, te Ly}
> n-th power of language L
L™ ={s182...5, | s1,82,...,8, € L}
» Unionof L1 and Loy

L1UL2={S’SEL10I‘S€L2}

Example

Ly = {o,01} Ly ={e,1,11,111,...}

Ly Ly = {o0,01,011,0111,... } U {01,011,0111,01111,...}
= {0,01,011,0111,...}

0 followed by any number of 1s

L? = {00,001, 010, 0101} Ly =1Ly
Ly =Ly foranyn >1

Ly U Ly ={0,01,¢,1,11,111,... }

Operations on languages

The star of L are contains strings made up of zero or more chunks from L

*=I1°UrLlltul?uU...

Example: L1 = {0,01}and Ly = {e,1,11,111,... }
Whatis L7? L3?

Example

L) = {0, 01}

L = {e}

Li = {o,01}

L? = {00, 001, 010, 0101}

L3 = {000, 0001, 0010, 00101, 0100, 01001, 01010, 010101}

Which of the following are in L}?
00100001 00110001 10010001

Example

L) = {0, 01}

L = {e}

Li = {o,01}

L? = {00, 001, 010, 0101}

L3 = {000, 0001, 0010, 00101, 0100, 01001, 01010, 010101}

Which of the following are in L}?
00100001 00110001 10010001

Yes No No

Example

L) = {0, 01}

L = {e}

Li = {o,01}

L? = {00, 001, 010, 0101}

L3 = {000, 0001, 0010, 00101, 0100, 01001, 01010, 010101}

Which of the following are in L}?
00100001 00110001 10010001

Yes No No

L7 contains all strings such that any 1 is preceded by a 0

Example

Ly ={g,1,11,111,...}
any number of 1s

Ly = {e}
LY = I,
L3 = Ly

=1Ly, (n>1)

Example

Ly ={g,1,11,111,...}
any number of 1s

Ly=IL3ULiuLdu...

LY =

2 = {e} ={e}ULyULU...
1 _

L3 = Ly

5 =

Combining languages

We can construct languages by starting with simple ones, like {0} and {1},
and combining them

{oy({o} U {1})” = 0(0+1)"

all strings that start with 0

Combining languages

We can construct languages by starting with simple ones, like {0} and {1},
and combining them

{oy({o} U {1})” = 0(0+1)"

all strings that start with 0

(foH{1}) U ({1}{o}*) = o017+ 10
0 followed by any number of 1s, or
1 followed by any number of 0s

Combining languages

We can construct languages by starting with simple ones, like {0} and {1},
and combining them

{oy({o} U {1})” = 0(0+1)"

all strings that start with 0

(foH{1}) U ({1}{o}*) = o017+ 10
0 followed by any number of 1s, or
1 followed by any number of 0s

0(0 4 1)* and 01* + 10" are regular expressions
Blueprints for combining simpler languages into complex ones

Syntax of regular expressions

Aregular expression over Y is an expression formed by the following rules
» The symbols () and ¢ are regular expressions
> Everyain X isaregularexpression

> If Rasd S are regular expressions, soare R + S, RS and R*

Examples:
0 £
0(0 + 1)* 1*(e 4 0)
01* + 10% (0+1)%01(0 4 1)*

Alanguage is regular if it is represented by a regular expression

Understanding regular expressions

2 ={0,1}

01* = 0(1)* represents {0, 01,011, 0111, . ..

0 followed by any number of 1s

01*isnot (01)*

Understanding regular expressions

0 + lyields {0, 1} strings of length 1
(0 + 1)*yields {¢,0,1,00,01,10,11,... } any string
(0+1)*010 any string that ends in 010

(0+1)*01(0+1)* any string containing 01

Understanding regular expressions

What is the following language?
((0+1)(0+1))"+((0+1)(0+1)(0+1))"

Understanding regular expressions

What is the following language?
((0+1)(0+1))"+((0+1)(0+1)(0+1))"

((0+1)(041))* (0+1)(0+1)(0+1))*

Understanding regular expressions

What is the following language?
((0+1)(0+1))"+((0+1)(0+1)(0+1))"

((0+1)(041))* (0+1)(0+1)(0+1))*

(0+1)(0+1) (04+1)(0+1)(0+1)

Understanding regular expressions

What is the following language?
((0+1)(0+1))"+((0+1)(0+1)(0+1))"

((0+1)(041))* (0+1)(0+1)(0+1))*

(0+1)(0+1) (0+1)(0+1)(0+1)
strings of length 2 strings of length 3

Understanding regular expressions

What is the following language?
((0+1)(0+1))"+((0+1)(0+1)(0+1))"

((0+1)(041))* ((04+1)(04+1)(0+1))*
strings of even length strings whose length is a
multiple of 3
(0+1)(0+1) (0+1)(0+1)(0+1)

strings of length 2 strings of length 3

Understanding regular expressions

What is the following language?
((0+1)(04+1))"+((0+1)(0+1)(0+1))*
strings whose length is even or a multiple of 3
=strings of length 0, 2, 3,4, 6,8,9,10,12, ...

((0+1)(041))* ((04+1)(04+1)(0+1))*
strings of even length strings whose length is a
multiple of 3
(0+1)(0+1) (0+1)(0+1)(0+1)

strings of length 2 strings of length 3

Understanding regular expressions

What is the following language?
((0+1)(0+1)+(0+1)(0+1)(0+1))"

Understanding regular expressions

What is the following language?
(0+1)(0+1)+(0+1)(0+1)(041))*

(0+1)(04+1)+(0+1)(0+1)(0+1)

Understanding regular expressions

What is the following language?
(0+1)(0+1)+(0+1)(0+1)(041))*

(0+1)(04+1)+(0+1)(0+1)(0+1)

(0+1)(0+1) (04+1)(0+1)(0+1)

Understanding regular expressions

What is the following language?
(0+1)(0+1)+(0+1)(0+1)(041))*

(0+1)(04+1)+(0+1)(0+1)(0+1)

(0+1)(0+1) (0+1)(0+1)(0+1)
strings of length 2 strings of length 3

Understanding regular expressions

What is the following language?
(0+1)(0+1)+(0+1)(0+1)(041))*

(0+1)(0+1)+(0+1)(0+1)(0+1)
strings of length 2 or 3

(0+1)(0+1) (0+1)(0+1)(0+1)
strings of length 2 strings of length 3

Understanding regular expressions

What is the following language?
(0+1)(0+1)+(0+1)(0+1)(041))*
strings that can be broken into blocks, where each block has length 2 or 3

(0+1)(0+1)+(0+1)(0+1)(0+1)
strings of length 2 or 3

(0+1)(0+1) (0+1)(0+1)(0+1)
strings of length 2 strings of length 3

Understanding regular expressions

What is the following language?
(0+1)(0+1)+(O+1)(0+1)(0+1))*
strings that can be broken into blocks, where each block has length 2 or 3

Which are in the language?
£ 1 01 011 00110 011010110

Understanding regular expressions

What is the following language?
(0+1)(0+1)+(O+1)(0+1)(0+1))*
strings that can be broken into blocks, where each block has length 2 or 3

Which are in the language?

01 011 00110 011010110
v X v v v 4

()
-

The regular expression represents all strings except 0 and 1

Understanding regular expressions

What is the following language?

(14014 001)" (¢ + 0+ 00)

Understanding regular expressions

What is the following language?

ends in at most two 0s

——
(14 01+ 001)* (¢4 0+ 00)

Understanding regular expressions

What is the following language?

ends in at most two 0s

,—/h
(14 01+ 001)* (£ 4 0+ 00)
|

at most two 0s between two consecutive 1s

Never three consecutive 0s

The regular expression represents strings not containing 000

Examples:

€ 00 01100101110 0010010

Writing regular expressions

Write a regular expression for all strings with two consecutive 0s

Writing regular expressions

Write a regular expression for all strings with two consecutive 0s

(anything)00(anything)

(0+1)*00(0 + 1)*

