NFA to DFA conversion and regular expressions CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2015

DFAs and NFAS are equally powerful

NFA can do everything a DFA can do How about the other way?

Every NFA can be converted into a DFA for the same language

$\rm NFA \rightarrow \rm DFA$ in two easy steps

- **1**. Eliminate ε -transitions
- 2. Convert simplified NFA to DFA We will do this first

$\mathrm{NFA} \rightarrow \mathrm{DFA}:$ intuition

$\mathrm{NFA} \rightarrow \mathrm{DFA}:$ intuition

 $NFA \rightarrow DFA$: states

DFA has a state for every subset of NFA states

 $NFA \rightarrow DFA$: transitions

DFA has a state for every subset of NFA states

NFA \rightarrow DFA: accepting states

DFA accepts if it contains an NFA accepting state

$NFA \rightarrow DFA$: eliminate unreachable states

At the end, you may eliminate unreachable states

General conversion

	NFA	DFA
states	q_0, q_1, \ldots, q_n	$\emptyset, \{q_0\}, \{q_1\}, \{q_0, q_1\}, \ldots,$
		$\{q_0,\ldots,q_n\}$
		one for each subset of states
initial state	q_0	$\{q_0\}$
transitions	δ	$\delta'(\{q_{i_1},\ldots,q_{i_k}\},a) =$
		$\delta(q_{i_1},a)\cup\cdots\cup\delta(q_{i_k},a)$
accepting	$F \subseteq Q$	$F' = \{S \mid S \text{ contains some state in } F\}$
states		

$\rm NFA \rightarrow \rm DFA$ in two easy steps

- 1. Eliminate ε -transitions
- 2. Convert simplified NFA to DFA 🖌

Eliminating ε -transitions

Accepting states: q_2, q_1, q_0

Eliminating ε -transitions

Eliminating ε -transitions

Paths with ε 's are replaced with a single transition

States that can reach accepting state by ε are all accepting

Regular expressions

String concatenation

$$st = abbbab$$
 $s = abb$ $ts = bababb$ $t = bab$ $ss = abbabb$

sst = abbabbbab

Operations on languages

• Concantenation of languages L_1 and L_2

$$L_1 L_2 = \{ st : s \in L_1, t \in L_2 \}$$

n-th power of language L

$$L^n = \{s_1 s_2 \dots s_n \mid s_1, s_2, \dots, s_n \in L\}$$

• Union of L_1 and L_2

$$L_1 \cup L_2 = \{s \mid s \in L_1 \text{ or } s \in L_2\}$$

$$L_1 = \{0, 01\}$$
 $L_2 = \{\varepsilon, 1, 11, 111, \dots\}$

$$L_1L_2 = \{0, 01, 011, 0111, \dots\} \cup \{01, 011, 0111, 01111, \dots\}$$
$$= \{0, 01, 011, 0111, \dots\}$$
$$0 \text{ followed by any number of 1s}$$

$$L_1^2 = \{00, 001, 010, 0101\} \qquad \qquad L_2^2 = L_2 \\ L_2^n = L_2 \quad \text{for any } n \geqslant 1$$

$$L_1 \cup L_2 = \{0, 01, \varepsilon, 1, 11, 111, \dots\}$$

Operations on languages

The star of L are contains strings made up of zero or more chunks from L

 $L^* = L^0 \cup L^1 \cup L^2 \cup \dots$ Example: $L_1 = \{0, 01\}$ and $L_2 = \{\varepsilon, 1, 11, 111, \dots\}$ What is L_1^* ? L_2^* ?

$$\mathit{L}_1 = \{\texttt{0},\texttt{01}\}$$

$$\begin{split} L_1^0 &= \{\varepsilon\} \\ L_1^1 &= \{0,01\} \\ L_1^2 &= \{00,001,010,0101\} \\ L_1^3 &= \{000,0001,0010,0101,0100,01001,01010,010101\} \\ & & \text{Which of the following are in } L_1^*? \\ 00100001 & & 00110001 \\ \end{split}$$

$$\mathit{L}_1 = \{\texttt{0},\texttt{01}\}$$

$$\begin{split} L_1^0 &= \{\varepsilon\} \\ L_1^1 &= \{0,01\} \\ L_1^2 &= \{00,001,010,0101\} \\ L_1^3 &= \{000,0001,0010,00101,0100,01001,01010,010101\} \\ \end{split}$$

 Which of the following are in $L_1^*?$
 00100001 00110001 10010001
 Yes No No

$$\mathit{L}_1 = \{\texttt{0},\texttt{01}\}$$

$$L_{1}^{0} = \{\varepsilon\}$$

$$L_{1}^{1} = \{0, 01\}$$

$$L_{1}^{2} = \{00, 001, 010, 0101\}$$

$$L_{1}^{3} = \{000, 0001, 0010, 00101, 0100, 01001, 01010, 010101\}$$
Which of the following are in L_{1}^{*} ?
00100001
Ves
No
No

 L_1^* contains all strings such that any 1 is preceded by a 0

$$L_2 = \{\varepsilon, 1, 11, 111, \dots\}$$

any number of 1s

$$L_2^0 = \{\varepsilon\}$$

$$L_2^1 = L_2$$

$$L_2^2 = L_2$$

$$L_2^n = L_2 \quad (n \ge 1)$$

$$L_2 = \{arepsilon, 1, 11, 111, \dots\}$$

any number of 1s

$$L_2^0 = \{\varepsilon\}$$

$$L_2^1 = L_2$$

$$L_2^2 = L_2$$

$$L_2^n = L_2 \quad (n \ge 1)$$

$$L_2^* = L_2^0 \cup L_2^1 \cup L_2^2 \cup \dots$$
$$= \{\varepsilon\} \cup L_2 \cup L_2 \cup \dots$$
$$= L_2$$

$$L_2^* = L_2$$

Combining languages

We can construct languages by starting with simple ones, like $\{0\}$ and $\{1\},$ and combining them

$$\{0\}(\{0\}\cup\{1\})^* \qquad \Rightarrow \quad 0(0+1)^*$$

all strings that start with 0

Combining languages

We can construct languages by starting with simple ones, like $\{0\}$ and $\{1\}$, and combining them

$$\{0\}(\{0\} \cup \{1\})^* \qquad \Rightarrow \quad 0(0+1)^* \\ \text{all strings that start with } 0$$

 $(\{0\}\{1\}^*) \cup (\{1\}\{0\}^*) \Rightarrow 01^* + 10^*$

 $01^{*} + 10^{*}$

0 followed by any number of 1s, or 1 followed by any number of 0s

Combining languages

We can construct languages by starting with simple ones, like $\{0\}$ and $\{1\}$, and combining them

$$\{0\}(\{0\}\cup\{1\})^* \qquad \Rightarrow \quad 0(0+1)^*$$

all strings that start with 0

$$(\{0\}\{1\}^*) \cup (\{1\}\{0\}^*) \Rightarrow 01^* + 10^*$$

0 followed by any number of 1s, or 1 followed by any number of 0s

 $0(0+1)^*$ and $01^* + 10^*$ are regular expressions Blueprints for combining simpler languages into complex ones

Syntax of regular expressions

A regular expression over Σ is an expression formed by the following rules

- The symbols \emptyset and ε are regular expressions
- Every a in Σ is a regular expression
- If R asd S are regular expressions, so are R + S, RS and R^*

A language is regular if it is represented by a regular expression

$$\Sigma = \{0,1\}$$

$$01^* = 0(1)^*$$
 represents $\{0, 01, 011, 0111, \dots\}$
0 followed by any number of 1s

01* is not (01)*

 $\begin{array}{ll} 0+1 \mbox{ yields } \{0,1\} & \mbox{ strings of length 1} \\ (0+1)^* \mbox{ yields } \{\varepsilon,0,1,00,01,10,11,\dots\} & \mbox{ any string } \\ (0+1)^* 010 & \mbox{ any string that ends in 010} \\ (0+1)^* 01(0+1)^* & \mbox{ any string containing 01} \end{array}$

What is the following language? $((0+1)(0+1))^* + ((0+1)(0+1)(0+1))^*$

What is the following language? $((0+1)(0+1))^* + ((0+1)(0+1)(0+1))^*$

 $((0+1)(0+1))^*$

 $((0+1)(0+1)(0+1))^*$

What is the following language? $((0+1)(0+1))^* + ((0+1)(0+1)(0+1))^*$

$$((0+1)(0+1))^*$$
 $((0+1)(0+1)(0+1))^*$

 $(0+1)(0+1) \\ (0+1)(0+1)(0+1)$

What is the following language? $((0+1)(0+1))^* + ((0+1)(0+1)(0+1))^*$

$$(0+1)(0+1))^* \qquad \qquad ((0+1)(0+1)(0+1))^*$$

(0+1)(0+1)strings of length 2 (0+1)(0+1)(0+1)strings of length 3

What is the following language? $((0+1)(0+1))^* + ((0+1)(0+1)(0+1))^*$

 $((0+1)(0+1))^*$ strings of even length

(0+1)(0+1)strings of length 2

$$((0+1)(0+1)(0+1))^*$$

strings whose length is a
multiple of 3

$$\begin{array}{c} (0+1)(0+1)(0+1)\\ \text{strings of length 3} \end{array}$$

What is the following language? $((0+1)(0+1))^* + ((0+1)(0+1)(0+1))^*$ strings whose length is even or a multiple of 3 = strings of length 0, 2, 3, 4, 6, 8, 9, 10, 12, ...

 $((0+1)(0+1))^*$ strings of even length

 $((0+1)(0+1)(0+1))^*$ strings whose length is a multiple of 3

(0+1)(0+1)strings of length 2 $\begin{array}{c} (0+1)(0+1)(0+1)\\ \text{strings of length 3} \end{array}$

What is the following language? $((0+1)(0+1)+(0+1)(0+1)(0+1))^*$

What is the following language? $((0+1)(0+1)+(0+1)(0+1)(0+1))^*$

$$(0+1)(0+1) + (0+1)(0+1)(0+1) \\$$

What is the following language? $((0+1)(0+1)+(0+1)(0+1)(0+1))^*$

$$(0+1)(0+1)+(0+1)(0+1)(0+1)\\$$

(0+1)(0+1) (0+1)(0+1)(0+1)

What is the following language? $((0+1)(0+1)+(0+1)(0+1)(0+1))^*$

$$(0+1)(0+1)+(0+1)(0+1)(0+1)\\$$

(0+1)(0+1)strings of length 2 (0+1)(0+1)(0+1)strings of length 3

What is the following language? $((0+1)(0+1)+(0+1)(0+1)(0+1))^*$

$$(0+1)(0+1) + (0+1)(0+1)(0+1)$$

strings of length 2 or 3

 $\begin{array}{ll} (0+1)(0+1) & (0+1)(0+1) \\ \text{strings of length 2} & \text{strings of length 3} \end{array}$

What is the following language? $((0+1)(0+1)+(0+1)(0+1)(0+1))^*$

strings that can be broken into blocks, where each block has length 2 or 3

$$(0+1)(0+1) + (0+1)(0+1)(0+1)$$

strings of length 2 or 3

 $\begin{array}{ll} (0+1)(0+1) & (0+1)(0+1) \\ \text{strings of length 2} & \text{strings of length 3} \end{array}$

27/30

What is the following language? $((0+1)(0+1)+(0+1)(0+1)(0+1))^*$

strings that can be broken into blocks, where each block has length 2 or 3

Which are in the language?

arepsilon 1 01 011 00110 011010110

What is the following language? $((0+1)(0+1)+(0+1)(0+1)(0+1))^*$

strings that can be broken into blocks, where each block has length 2 or 3

The regular expression represents all strings except 0 and 1

What is the following language?

 $(1+01+001)^* (\varepsilon + 0 + 00)$

What is the following language? ends in at most two 0s $(1 + 01 + 001)^*$ $(\varepsilon + 0 + 00)$

00

ε

What is the following language? ends in at most two 0s $(1 + 01 + 001)^*$ $(\varepsilon + 0 + 00)$

at most two 0s between two consecutive 1s

Never three consecutive 0s

The regular expression represents strings not containing 000

Examples:

0110010110

0010010

Writing regular expressions

Write a regular expression for all strings with two consecutive 0s

Writing regular expressions

Write a regular expression for all strings with two consecutive 0s

(anything)00(anything)

 $(0+1)^*00(0+1)^*$