Week 4 Tutorial Session

- 1. For any integer $k \geq 0$, define $L_k = \{ww \mid w \in \{0, 1\}^k\}$.
 - (a) Write down all strings in L_3 .
 - (b) Prove that any DFA for L_k has at least 2^k states. Hint: After reading the first half of the input, what should the DFA remember? Can you come up with a set of 2^k strings that are pairwise distinguishable by L_k ?
- 2. For an integer $k \ge 1$, define L_k to be the set of strings (over $\Sigma = \{0, 1\}$) that have a 1 at the kth-to-last position. For example, **1**00 and 0**1**01 are in L_3 , but 0 and 011 are not.
 - (a) Prove that every DFA for L_k has at least 2^k states.
 - (b) Describe (e.g. with a diagram) an NFA for L_k that has at most k+1 states.
- 3. Let L be the set of strings over $\{0,1\}$ whose number of ones is a perfect square (e.g. $0,1,4,9,16,\ldots$). Prove that L is irregular.