Cook-Levin Theorem
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2018

Chinese University of Hong Kong

1/18

NP-completeness

P-complete

Theorem (Cook-Levin)

G Every language in NP

polynomial-time reduces to
SAT

2/18

Cook-Levin theorem

Every L € NP polynomial-time reduces to SAT

Need to find a polynomial-time reduction R such that

L SAT
z Boolean formula ¢
z€L — is satisfiable

3/18

NP-completeness of SAT

All we know: L has a polynomial-time verifier V

Tableau of computation history of

%
. S

00 110#100

1% 0110410 01104100
z S
z € Lifand only if T
V accepts (z, s) for some s
1Gacc @ -

4/18

Tableau of computation history

—_ S

90 110#100

0 i110# 100 n = length of z
height of tableau is O(n®) for

some constant ¢
T : width of tableau is O(n¢)

k possible tableau symbols

19acc Q| -~

Trg Y — True ifcell (T, 9) contains symbol u
" \rFalse otherwise

5/18

Reduction to SAT

L SAT
z Boolean formula ¢
z€eL — © Is satisfiable

Will design a formula ¢ such that

variables of ¢ 78w

assignmentto zr.g, & assignment to tableau symbols
satisfying assignment accepting computation history
 is satisfiable V accepts (z, s) for some s

T T

6/18

Reduction to SAT

Will construct in O(n?¢) time a formula ¢ such that
(z) is True precisely when the assignment to {zr s .} represents
legal and accepting computation history

G0 110#100
® = ©cell N\ Pinit \ Pmove A Pacc 0O nl110#100
©cell : Exactly one symbol in each
cell
©init : First row is qoz#s for some s
©move : Moves between adjacent
rows follow the transitions of V'
©Yacc : Last row contains gacc 1Gacc @ -

7/18

©eell - €xactly one symbol per cell

Peell = Peell,1,1 N+ A Peell, trows, tcols where

Geell, 7,8 = (21,81 V -V Z7.5.1) at least one symbol

Nzr 51 ATT,52)

Azr,51 N TT,5,3) ,
) no two symbols in one cell

ANZT,8 k-1 N TT,5.%)

8/18

Pinit and Pacc

First row is gyztts for some s

Pinit = T1,1,q0 N 1,2, N+ AN X112, N\ Tl ot

Last row contains gscc Somewhere

Pacc = Tirows,1,qacc /N N Titrows, #cols, gace

9/18

Legal and illegal transitions windows

legal windows illegal windows
abx | = - |aab] -
abx | - abq3
daqaad | - - | gqzqza| -

anX qsqsx
a/xL

aba |- - [Agzad| -
abgg | - - | gsab| -
26| = - lagszal -
an aqﬁx

10/18

©move : Moves between rows follow transitions of

ai az as
b1 ba b3

1qacc Q -

Pmove = Pmove,1,1 Nooo R ¥Pmove,t#trows—1 #cols—2

7,801 N XT,5+1,a0 N TT,5+2,a5\
Pmove, T,S = \/
rizir] \TT+1,8,b1 N TT+1,5+1,bp N TT+1,5+2,b;

1/18

NP-completeness of SAT
% Boolean formula ¢

z€L <oy v is satisfiable

Let V be a polynomial-time verifier for L

R =0ninput z

1. Construct the formulas ¢celi; @inits Pmoves Pacc

2. Output ¢ = Yeell A Pinit N Pmove A Pacc

R takes time O(n?°)

V accepts (z, s) for some s if and only if ¢ is satisfiable

12/18

NP-completeness: More examples

Cover for triangles

k-cover for triangles: k vertices that touch all triangles

Has 2-cover for triangles?
Yes

Has 1-cover for triangles?
No, it has two vertex-disjoint triangles

TRICOVER = {(G, k) | G has a k-cover for triangles}

TRICOVER is NP-complete

13/18

Step 1: TRICOVER is in NP

What is a solution for TRICOVER?
A subset of vertices like {D, F}

V =0n input (G, k&, S), where S is a set of k A—

vertices lC\ Z
1. For every triple (u, v, w) of vertices:

If (u,v), (v, w), (w, u) are all edges in G:

If none of u, v, w are in S, reject E

2. Otherwise, accept

Running time = O(n?)

14/18

Step 2: Some NP-hard problem TRICOVER

VC = {(G, k) | G has a vertex cover of size k}

Some vertex in every edge is covered

TRICOVER = {(G, k) | G has a k-cover for triangles}

Some vertex in every triangle is covered
Idea: replace edges by triangles

[N = LN

vertex cover in G cover for triangles in G’

15/18

VC polynomial-time reduces to TRICOVER

R =0n input (G, k), where graph G has n vertices and m edges,

1. Construct the following graph G':
G’ has n + m vertices:
v, ..., v, are vertices from G
introduce a new vertex u;; for every edge (v;, v;) of G
For every edge (v;, v;) of G:
include edges (v, v;), (vi, ug), (ug, v;) IN G’
2. Output (G', k)

Running time is O(n + m)

16/18

Step 3: Argue correctness (forward)

(G,ky e VC = (G, k) € TRICOVER

D¥) m;
G has a k-vertex cover S G’ has a k-triangle cover S

old triangles from G are covered
new triangles in G’ also covered

17/18

Step 3: Argue correctness (backward)

(G,k)y eVC <« (G, k) € TRICOVER

Tj)lo -

G has a k-vertex cover S’ G’ has a k-triangle cover S
S’ is obtained after moving Some vertices in S may not
some vertices of S come from G!

Since S’ covers all triangles But we can move them and
in @, it covers all edges in G still cover the same triangle

18/18

	NP-completeness: More examples

