NP-completeness

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2018

Chinese University of Hong Kong

What we say

"INDEPENDENT-SET is at least as hard as CLIQUE"

What does that mean?

We mean

If CLIQUE cannot be decided by a polynomial-time Turing machine, then neither does INDEPENDENT-SET

If INDEPENDENT-SET can be decided by a polynomial-time Turing machine, then so does CLIQUE

Similar to the reductions we saw in the past 4-5 lectures, but with the additional restriction of polynomial-time

 $\begin{aligned} \mathsf{CLIQUE} &= \{ \langle G, k \rangle \mid G \text{ is a graph having a clique of } k \text{ vertices} \} \\ \texttt{INDEPENDENT-SET} &= \{ \langle G, k \rangle \mid G \text{ is a graph having} \\ & \text{an independent set of } k \text{ vertices} \} \end{aligned}$

Theorem

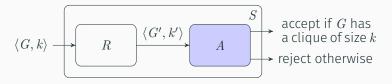
If INDEPENDENT-SET has a polynomial-time Turing machine, so does CLIQUE

If INDEPENDENT-SET has a polynomial-time Turing machine, so does CLIQUE

Proof

Suppose INDEPENDENT-SET is decided by a poly-time TM A

We want to build a TM ${\cal S}$ that uses ${\cal A}$ to solve CLIQUE

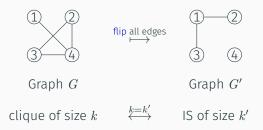


We look for a polynomial-time Turing machine *R* that turns the question

"Does G have a clique of size k?"

into

"Does G' have an independent set (IS) of size k'?"



```
On input \langle G, k \rangle
Construct G' by flipping all edges
of G
Set k' = k
Output \langle G', k' \rangle
```

$$\langle G,k\rangle \xrightarrow{} R \xrightarrow{} \langle G',k'\rangle$$

Cliques in $G \quad \longleftrightarrow$ Independent sets in G'

- If G has a clique of size kthen G' has an independent set of size k
- If G does not have a clique of size k then G' does not have an independent set of size k

We showed that

If INDEPENDENT-SET is decidable by a polynomial-time Turing machine, so is CLIQUE

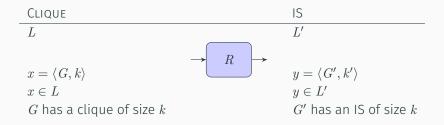
by converting any Turing machine for INDEPENDENT-SET into one for CLIQUE

To do this, we came up with a reduction that transforms instances of CLIQUE into ones of INDEPENDENT-SET

Language L polynomial-time reduces to L' if

there exists a polynomial-time Turing machine R that takes an instance x of L into an instance y of L' such that

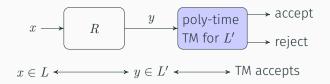
 $x \in L$ if and only if $y \in L'$



L reduces to L' means L is no harder than L'If we can solve L', then we can also solve L

Therefore

If L polynomial-time reduces to L' and $L' \in P$, then $L \in P$



Pay attention to the direction of reduction

"A is no harder than B" and "B is no harder than A"

have completely different meanings

It is possible that L reduces to L^\prime and L^\prime reduces to L

That means L and L' are as hard as each other For example, IS and CLIQUE reduce to each other

A boolean formula is an expression made up of variables, ANDs, ORs, and negations, like

$$\varphi = (x_1 \vee \overline{x}_2) \land (x_2 \vee \overline{x}_3 \vee x_4) \land (\overline{x}_1)$$

Task: Assign TRUE/FALSE values to variables so that the formula evaluates to true

e.g.
$$x_1 = F$$
 $x_2 = F$ $x_3 = T$ $x_4 = T$

Given a formula, decide whether such an assignment exist

SAT = {⟨φ⟩ | φ is a satisfiable Boolean formula}
3SAT = {⟨φ⟩ | φ is a satisfiable Boolean formula conjunctive normal form with 3 literals per clause}

literal: x_i or \overline{x}_i Conjuctive Normal Form (CNF): AND of ORs of literals 3CNF: CNF with 3 literals per clause (repetitions allowed)

$$\underbrace{(\overline{x}_1}_{\text{literal}} \lor x_2 \lor \overline{x}_2) \land \underbrace{(\overline{x}_2 \lor x_3 \lor x_4)}_{\text{clause}}$$

$$\varphi = (x_1 \vee \overline{x}_2) \land (x_2 \vee \overline{x}_3 \vee x_4) \land (\overline{x}_1)$$

Finding a solution: Try all possible assignments FFFF FTFF TFFF TTFF FFFT FTFT TFFT TTFT FFTF FTTF TFTF TTTF FFTT TFTT FTTT TTTT For n variables, there are 2^n possible assignments Takes exponential time

Verifying a solution: substitute $x_1 = F \quad x_2 = F$ $x_3 = T \quad x_4 = T$ evaluating the formula $\varphi = (F \lor T) \land (F \lor F \lor T) \land (T)$ can be done in linear time

Cook-Levin theorem

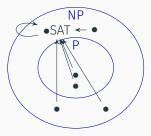
Every $L \in \mathsf{NP}$ polynomial-time reduces to SAT

SAT = { $\langle \varphi \rangle \mid \varphi$ is a satisfiable Boolean formula} e.g. $\varphi = (x_1 \lor \overline{x}_2) \land (x_2 \lor \overline{x}_3 \lor x_4) \land (\overline{x}_1)$

Every problem in NP is no harder than SAT

But SAT itself is in NP, so SAT must be the "hardest problem" in NP

If SAT \in P, then P = NP



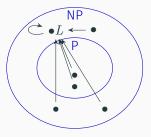
A language *L* is NP-hard if:

For every N in NP, N polynomial-time reduces to \boldsymbol{L}

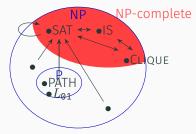
A language L is NP-complete if L is in NP and L is NP-hard

Cook–Levin theorem

SAT is NP-complete



Our (conjectured) picture of NP



 $A \rightarrow B$: A polynomial-time reduces to B

In practice, most NP problems are either in P (easy) or NP-complete (probably hard)

Optimistic:

If we manage to solve SAT, then we can also solve CLIQUE and many other

Pessimistic:

Since we believe $\mathsf{P} \neq \mathsf{NP},$ it is unlikely that we will ever have a fast algorithm for SAT

We saw a few examples of NP-complete problems, but there are many more

Surprisingly, most computational problems are either in P or NP-complete

By now thousands of problems have been identified as NP-complete

Reducing IS to VC

$$\langle G,k\rangle \longrightarrow R \longrightarrow \langle G',k'\rangle$$

G has an IS of size $k \quad \longleftrightarrow \quad G'$ has a VC of size k'

Example

Independent sets:

 $\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \\ \{1, 2\}, \{1, 3\}$

vertex covers:

$$\begin{array}{l} \{2,4\}, \{3,4\},\\ \{1,2,3\}, \{1,2,4\},\\ \{1,3,4\}, \{2,3,4\},\\ \{1,2,3,4\} \end{array}$$

Reducing IS to VC

CL.	-:	
Lla	aim	

S is an independent set if and only if \overline{S} is a vertex cover

Proof:	IS	V
S is an independent set $ \begin{array}{c} \\ \updownarrow \\ no edge has both endpoints in S \\ \\ \\ \hline \\ \\ every edge has an endpoint in \overline{S} \\ \\ \\ \\ \hline \\ \overline{S} \text{ is a vertex cover} \end{array} $		<pre>{ { {</pre>

IS	VC
Ø	$\{1, 2, 3, 4\}$
$\{1\}$	$\{2, 3, 4\}$
$\{2\}$	$\{1, 3, 4\}$
$\{3\}$	$\{1, 2, 4\}$
$\{4\}$	$\{1, 2, 3\}$
$\{1, 2\}$	$\{3, 4\}$
$\{1, 3\}$	$\{2,4\}$

$$\langle G,k\rangle \longrightarrow \longrightarrow \langle G',k'\rangle$$

R: On input $\langle G, k \rangle$ Output $\langle G, n-k \rangle$

G has an IS of size $k \quad \longleftrightarrow \quad G$ has a VC of size n-k

Overall sequence of reductions:

 $\mathsf{SAT} \to \mathsf{3SAT} \to \mathsf{CLIQUE} \xrightarrow{\checkmark} \mathsf{IS} \xrightarrow{\checkmark} \mathsf{VC}$

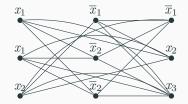
 $\begin{aligned} & \texttt{3SAT} = \{ \varphi \mid \varphi \text{ is a satisfiable Boolean formula in 3CNF} \\ & \texttt{CLIQUE} = \{ \langle G, k \rangle \mid G \text{ is a graph having a clique of } k \text{ vertices} \} \end{aligned}$

$$3\mathsf{CNF} \text{ formula } \varphi \longrightarrow R \longrightarrow \langle G, k \rangle$$

 φ is satisfiable $\iff G$ has a clique of size k

Reducing 3SAT to CLIQUE

Example: $\varphi = (x_1 \lor x_1 \lor x_2) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_2 \lor x_3)$



One vertex for each literal occurrence

One edge for each consistent pair (non-opposite literals)

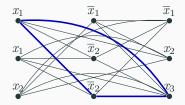
$$\operatorname{3CNF} \operatorname{formula} \varphi \longrightarrow R \longrightarrow \langle G, k \rangle$$

R: On input φ , where φ is a 3CNF formula with *m* clauses **Construct** the following graph *G*: *G* has 3m vertices, divided into *m* groups One for each literal occurrence in φ If vertices *u* and *v* are in different groups and consistent Add an edge (u, v)**Output** $\langle G, m \rangle$

Reducing 3SAT to CLIQUE

$$3\mathsf{CNF} \text{ formula } \varphi \longrightarrow R \longrightarrow \langle G, k \rangle$$

 φ is satisfiable \iff G has a clique of size m



$$\varphi = \begin{pmatrix} x_1 \lor x_1 \lor x_2) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_2 \lor x_3) \\ \scriptscriptstyle \mathsf{F} \quad \mathsf{T} \quad \mathsf{T} \quad \mathsf{T} \quad \mathsf{F} \quad \mathsf{F} \quad \mathsf{T} \\ \scriptstyle \mathsf{F} \quad \mathsf{T} \\ \scriptstyle \mathsf{F} \quad \mathsf{T} \\ \scriptstyle \mathsf{F} \quad \mathsf{T} \\ \scriptstyle \mathsf{T} \\ \scriptstyle \mathsf{F} \quad \mathsf{F} \quad \mathsf{T} \\ \scriptstyle \mathsf{F} \quad \mathsf{F} \quad \mathsf{T} \\ \scriptstyle \mathsf{F} \quad \mathsf{F} \quad \mathsf{T} \\ \scriptstyle \mathsf{F} \quad \mathsf{F} \\ \scriptstyle \mathsf{F} \quad \mathsf{T} \\ \scriptstyle \mathsf{T} \\ \scriptstyle \mathsf{F} \quad \mathsf{F} \quad \mathsf{F} \\ \scriptstyle \mathsf{F} \quad \mathsf{T} \\ \scriptstyle \mathsf{F} \quad \mathsf{F} \\ \scriptstyle \mathsf{F} \quad \mathsf{T} \\ \scriptstyle \mathsf{F} \quad \mathsf{F} \quad \mathsf{F} \\ \scriptstyle \mathsf{F} \quad \mathsf{T} \\ \scriptstyle \mathsf{F} \quad \mathsf{F} \quad \mathsf{F} \\ \scriptstyle \mathsf{F} \quad \mathsf{F} \quad \mathsf{F} \\ \scriptstyle \mathsf{F} \quad \mathsf{F} \quad \mathsf{F} \\ \scriptstyle \mathsf{F} \quad \mathsf{F} \quad \mathsf{F} \quad \mathsf{F} \\ \scriptstyle \mathsf{F} \quad \mathsf{F} \quad \mathsf{F} \quad \mathsf{F} \quad \mathsf{F} \\ \scriptstyle \mathsf{F} \quad \mathsf{F} \quad \mathsf{F} \quad \mathsf{F} \quad \mathsf{F} \\ \scriptstyle \mathsf{F} \quad \mathsf{F$$

$$\text{3CNF formula } \varphi \longrightarrow R \longrightarrow \langle G, k \rangle$$

Every satisfying assignment of φ gives a clique of size m in G

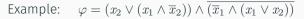
Conversely, every clique of size m in G gives a satisfying assignment of φ

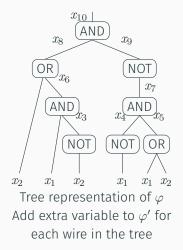
Overall sequence of reductions:

 $\mathsf{SAT} \to \mathsf{3SAT} \xrightarrow{\checkmark} \mathsf{CLIQUE} \xrightarrow{\checkmark} \mathsf{IS} \xrightarrow{\checkmark} \mathsf{VC}$

 $SAT = \{\varphi \mid \varphi \text{ is a satisfiable Boolean formula}\}$ e.g. $((x_1 \lor x_2) \land \overline{(x_1 \lor x_2)}) \lor \overline{((x_1 \lor (x_2 \land x_3)) \land \overline{x}_3)}$ $3SAT = \{\varphi' \mid \varphi' \text{ is a satisfiable 3CNF formula in 3CNF}\}$ e.g. $(x_1 \lor x_2 \lor x_2) \land (x_2 \lor x_3 \lor \overline{x}_4) \land (x_2 \lor \overline{x}_3 \lor \overline{x}_5)$

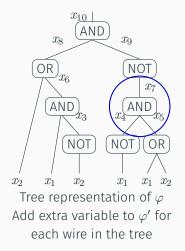
Reducing SAT to 3SAT





Reducing SAT to 3SAT

Example: $\varphi = (x_2 \lor (x_1 \land \overline{x}_2)) \land \overline{(\overline{x}_1 \land (x_1 \lor x_2))}$



Add clauses to φ' for each gate

x_4	x_5	x_7	$x_7 = x_4 \wedge x_5$
Т	Т	Т	Т
Т	Т	F	F
Т	F	Т	F
Т	F	F	Т
F	Т	Т	F
F	Т	F	Т
F	F	Т	F
F	F	F	Т

Clauses added:

 $(\overline{x}_4 \lor \overline{x}_5 \lor x_7) \land (\overline{x}_4 \lor x_5 \lor \overline{x}_7)$ $(x_4 \lor \overline{x}_5 \lor \overline{x}_7) \land (x_4 \lor x_5 \lor \overline{x}_7)$

Boolean formula
$$\varphi \rightarrow R \rightarrow$$
 3CNF formula φ'

R: On input $\langle \varphi \rangle$, where φ is a Boolean formula Construct and output the following 3CNF formula φ' φ' has extra variable x_{n+1}, \ldots, x_{n+t} one for each gate G_j in φ For each gate G_j , construct the forumla φ_j forcing the output of G_j to be correct given its inputs Set $\varphi' = \varphi_{n+1} \wedge \cdots \wedge \varphi_{n+t} \wedge \underbrace{(x_{n+t} \lor x_{n+t} \lor x_{n+t})}_{\text{requires output of } \varphi \text{ to be TRUE}}$

Boolean formula
$$\varphi \rightarrow R \rightarrow$$
 3CNF formula φ'

 $\varphi \text{ satisfiable} \longleftrightarrow \varphi' \text{ satisfiable}$

Every satisfying assignment of φ extends uniquely to a satisfying assignment of φ'

In the other direction, in every satisfying assignment of φ' , the x_1,\ldots,x_n part satisfies φ