Undecidable Problems for CFGs
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2018

Chinese University of Hong Kong

1/21

Decidable vs undecidable

Decidable Undecidable
DFA D accepts w TM M accepts w
CFG G generates w TM M halts on w

DFAs D and D’ accept same TM M accepts some input
inputs

TM M and M’ accept the
same inputs

CFG @ generates all inputs?
CFG G is ambiguous?

2/21

Representing computation

Ly = {w%bw | w € {a,b}*}

bb%abb
b%abb

09

al/al

b/bL xbb%abb

xbb%abb
xbb%xbb

®E®

XXX%XXXD

®®

XXXBXXX

X/XR

3/21

Configurations

A configuration consists of current state, head position, and tape

contents

Configuration
(abbreviation)

abg a

abb gacc

4/21

Computation history

qo abb%abb
X g2 bb%abb

xbb g2 %abb
xbb% q3 abb
xbb go %xbb

XXXBXXX q1
XXX%XX qacc X

computation
history

5/21

Computation histories as strings

If M halts on w, the computation history of (M, w) is the sequence
of configurations C,. .., Cy that M goes through on input w

g ab%ab #goab%abitx g b%abtt. #XX%X gacc X#
X ¢2 b%ab T T T
: The computation history can be written as a string
XXBXX 1 h over alphabetT'U QU {#}
XX%X Gace X

accepting history: M accepts w < gacc appearsin h

rejecting history: M rejectsw & gej appearsin b

6/21

Undecidable problems for CFGs

AlLLcre = {(G) | G is a CFG that generates all strings}

The language AlLcrg is undecidable

We will argue that

If ALLcrg can be decided, so can Ay

A = {(M,w) | M is a TM that rejects or loops on w}

7121

Undecidable problems for CFGs

Proof by contradiction

Suppose some Turing machine A decides AlLLcgg

accept if G generates all strings
(G)—1 4 _ .
reject otherwise

We want to construct a Turing machine S that decides Ay

accept if M rejects or
Convert loops on w
to G reject if M accepts w

G generates all strings if M rejects or loops on w

G fails to generate some string if M accepts w

8/21

Undecidable problems for CFGs
G fails to generate some strin
Convert | (G) g s
<M7 w> - to @ ﬁ
M accepts w

The alphabet of G willbe T'U Q U {#}

G will generate all strings except

accepting computation history of (M, w)

First we construct a PDA P, then convert it to CFG G

9/21

Undecidablility via computation histories
candidate compu- :
: ‘ accept everything
tation history h of P :
except accepting h
(M, w)

Hgoab%ab#tx g b%ab#. . Hxx%XqaccX# = Reject

P=oninputh (try to spot a mistake in h)

- If his not of the form #w #wntt.. . #w,#, accept
- If wy # gow or wy, does not contain g, accept

- If two consecutive blocks w;#w;1+1 do not follow from the
transitions of M, accept

Otherwise, h must be an accepting history, reject

10/21

Computation is local

a/aR
b/bR X/XR qo ab%ab

XX%BXX qq
XX%X qacc X

X /xR

Changes between configurations always occur around the head

1/21

Legal and illegal transitions windows

legal windows illegal windows
abx | = - |aab] -
abx | - abq3
daqaad | - - | gqzqza| -

anX qsqsx
a/xL

aba |- - [Agzad| -
abgg | - - | gsab| -
26| = - lagszal -
an aqﬁx

12/21

If two consecutive blocks w;#w;; do not #xb%gsa
follow from the transitions of M, accept #xblgs %X

[«

(=2

For every position of w;:
Remember offset from # in w; on stack
Remember first row of window in state
After reaching the next #:
Pop offset from # from stack as you consume input
Remember second row of window in state

If window is illegal, accept; Otherwise reject

13/21

The computation history method

AlLcre = {(G) | G is a CFG that generates all strings}

If ALLcrg can be decided, so can Ay

G accepts all strings except
accepting computation history of

G
(M, w) — Convert | (G) (M, w)
to G

We first construct a PDA P, then
convertitto CFG G

14/21

Post Correspondence Problem

Input: A fixed set of tiles, each containing a pair of strings

bab
cc

bab
e

baa
a

C
ab

a
ab

a
baba

Given an infinite supply of tiles from a particular set, can you match
top and bottom?

a ||baal||bab|| c || c ||bab a
ab|| a e |lab|lab|| cc ||baba

Top and bottom are both abaababccbaba

15/21

Undecidability of PCP

PCP = {{T) |
T is a collection of tiles that contains a top-bottom match}

Next lecture we will show (using computation history method)

The language PCP is undecidable

16/21

Ambiguity of CFGs

AMB = {(G) | G'is an ambiguous CFG}

The language AMB is undecidable

We will argue that

If AMB can be decided, then so can PCP

17/21

Ambiguity of CFGs

T (collection of tiles) +—— G (CFG)
If T can be matched, then G is ambiguous

If T cannot be matched, then G is unambiguous

First, let's number the tiles

bab C a
cc ab ab

18/21

Ambiguity of CFGs

T (collection of tiles)

2 3] [

Terminals: a, b, ¢, 1,2, 3

Variables: S, T, B

T — babT1
B — ccB1
T — bab1

B — ccl

Productions:
S—T|B
T—cT?
B — abB2
T — 2
B — ab2

— G (CFG)

T —aTl3
B — abB3
T — a3

B — ab3

19/21

Ambiguity of CFGs

Each sequence of tiles gives a pair of derivations

Q—®@
bab| | c C
cc ab| [ab

S = T = babT1 = babcT?21 = babcc221

S = B = ccB1= ccabB21 = ccabab221

If the tiles match, these two derive the same string

(with different parse trees)

20/21

Ambiguity of CFGs

T (collection of tiles) +—— G (CFG)
If T can be matched, then G is ambiguous v

If T cannot be matched, then G is unambiguous v

If G is ambiguous, then the two parse trees will look like

S S
\ \

T B
/’\ /'\
a T m bp B ™
/\ /’\
as No ba]
T B
N N
a; Ny b; my

Therefore nyng ... n; = mimsy ... m; and there is a match

21/21

