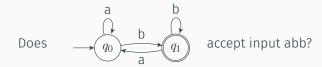
Decidability

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2018

Chinese University of Hong Kong



We can formulate this question as a language

$$A_{\mathrm{DFA}} = \{\langle D, w \rangle \mid D \text{ is a DFA that accepts input } w\}$$

Is A_{DFA} decidable?

One possible way to encode a DFA $D=(Q,\Sigma,\delta,q_0,F)$ and input $w=(\underbrace{(\mathsf{q0},\mathsf{q1})}_{Q}\underbrace{(\mathsf{a},\mathsf{b})}_{\Sigma}\underbrace{((\mathsf{q0},\mathsf{a},\mathsf{q0})(\mathsf{q0},\mathsf{b},\mathsf{q1})(\mathsf{q1},\mathsf{a},\mathsf{q0})(\mathsf{q1},\mathsf{b},\mathsf{q1})}_{\delta}\underbrace{(\mathsf{q0})}_{Q}\underbrace{(\mathsf{q1})}_{F}\underbrace{(\mathsf{abb})}_{w}$

$$A_{\mathsf{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$$

Pseudocode:

On input $\langle D, w \rangle$, where $D = (Q, \Sigma, \delta, q_0, F)$

Set $q \leftarrow q_0$ For $i \leftarrow 1$ to length(w) $q \leftarrow \delta(q, w_i)$ If $q \in F$ accept, else reject

TM description:

On input $\langle D, w \rangle$, where D is a DFA, w is a string

Simulate D on input w If simulation ends in an accept state, accept; else reject

$$A_{\mathsf{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$$

Turing machine details:

Check input is in correct format
(Transition function is complete, no duplicate transitions)

Perform simulation:

```
 ((\dot{q}0,q1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1))(\dot{a}bb) \\ ((\dot{q}0,q1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1))(\dot{a}bb) \\ ((q0,\dot{q}1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1))(\dot{a}bb) \\ ((q0,\dot{q}1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1)(\dot{a}bb) \\ ((q0,\dot{q}1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1)(\dot{a}bb) \\ ((q0,\dot{q}1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1)(\dot{a}bb) \\ ((q0,\dot{q}1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1)(\dot{a}bb) \\ ((q0,\dot{q}1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb) \\ ((q0,\dot{q}1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}bb)(\dot{a}b
```

 $A_{\mathsf{DFA}} = \{\langle D, w \rangle \mid D \text{ is a DFA that accepts input } w\}$

Turing machine details:

Check input is in correct format (Transition function is complete, no duplicate transitions)

Perform simulation: (very high-level)

Put markers on start state of D and first symbol of wUntil marker for w reaches last symbol:

Update both markers

If state marker is on accepting state, accept; else reject

Conclusion: A_{DFA} is decidable

Acceptance problems about automata

$$A_{\mathsf{DFA}} = \{\langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$$

$$A_{\mathsf{NFA}} = \{\langle N, w \rangle \mid N \text{ is an NFA that accepts input } w \}$$

$$A_{\mathsf{REX}} = \{\langle R, w \rangle \mid R \text{ is a regular expression that generates } w \}$$

Which of these is decidable?

Acceptance problems about automata

$$A_{\mathrm{NFA}} = \{\langle N, w \rangle \mid N \text{ is an NFA that accepts input } w\}$$

The following TM decides $A_{\rm NFA}$: On input $\langle N,w\rangle$ where N is an NFA and w is a string

Convert N to a DFA D using the conversion procedure from Lecture 3 Run TM M for $A_{\rm DFA}$ on input $\langle D,w\rangle$ If M accepts, accept; else reject

Conclusion: A_{NFA} is decidable \checkmark

Acceptance problems about automata

 $A_{\mathsf{REX}} = \{\langle R, w \rangle \mid R \text{ is a regular expression that generates } w\}$

The following TM decides A_{REX}

On input $\langle R, w \rangle$, where R is a regular expression and w is a string

Convert ${\it R}$ to an NFA ${\it N}$ using the conversion procedure from Lecture 4

Run the TM for A_{NFA} on input $\langle N,w \rangle$

If N accepts, accept; else reject

Conclusion: A_{REX} is decidable \checkmark

$$\label{eq:mindex} \begin{split} \mathsf{MIN}_{\mathsf{DFA}} &= \{\langle D \rangle \mid D \text{ is a minimal DFA}\} \end{split}$$

$$\mathsf{EQ}_{\mathsf{DFA}} &= \{\langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs and } L(D_1) = L(D_2)\} \\ E_{\mathsf{DFA}} &= \{\langle D \rangle \mid D \text{ is a DFA and } L(D) \text{ is empty}\} \end{split}$$

Which of the above is decidable?

$$\mathsf{MIN}_{\mathsf{DFA}} = \{ \langle D \rangle \mid D \text{ is a minimal DFA} \}$$

The following TM decides MIN_{DFA}
On input $\langle D \rangle$, where D is a DFA

Run the DFA minimization algorithm from Lecture 7
If every pair of states is distinguishable, accept; else reject

Conclusion: MIN_{DFA} is decidable ✓

$$\mathsf{EQ}_{\mathsf{DFA}} = \{\langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs and } L(D_1) = L(D_2)\}$$

The following TM decides EQ $_{
m DFA}$ On input $\langle D_1, D_2
angle$, where D_1 and D_2 are DFAs

Run the DFA minimization algorithm from Lecture 7 on D_1 to obtain a minimal DFA D_1^\prime

Run the DFA minimization algorithm from Lecture 7 on D_2 to obtain a minimal DFA D_2^\prime

If $D_1'=D_2'$, accept; else reject

Conclusion: EQ_{DFA} is decidable ✓

$$E_{\mathrm{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) \text{ is empty} \}$$

The following TM T decides E_{DFA} On input $\langle D \rangle$, where D is a DFA

Run the TM S for EQ_{DFA} on input $\langle D, \longrightarrow \rangle$ If S accepts, T accepts; else T rejects

Conclusion: E_{DFA} is decidable \checkmark

$$A_{\mathsf{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \}$$

L where L is a context-free language

$$\mathsf{EQ}_{\mathsf{CFG}} = \{\langle \mathit{G}_1, \mathit{G}_2 \rangle \mid \mathit{G}_1, \mathit{G}_2 \text{ are CFGs and } \mathit{L}(\mathit{G}_1) = \mathit{L}(\mathit{G}_2)\}$$

Which of the above is decidable?

$$A_{\mathrm{CFG}} = \{\langle \, G, w \rangle \mid G \text{ is a CFG that generates } w \}$$

The following TM $\,V$ decides $A_{\rm CFG}$ On input $\langle G,w\rangle$, where $\,G$ is a CFG and $\,w$ is a string

Eliminate the arepsilon- and unit productions from G

Convert G into Chomsky Normal Form G'

Run Cocke–Younger–Kasami algorithm on $\langle G', w \rangle$

If the CYK algorithm finds a parse tree, $\it V$ accepts; else $\it V$ rejects

Conclusion: A_{CFG} is decidable \checkmark

L where L is a context-free language

Let L be a context-free language $\label{eq:lemma:$

The following TM decides LOn input w

Run TM $\,V$ from the previous slide on input $\langle G,w\rangle$ If $\,V$ accepts, accept; else reject

Conclusion: every context-free language L is decidable

$$\mathsf{EQ}_{\mathsf{CFG}} = \{ \langle G_1, G_2 \rangle \mid G_1, G_2 \text{ are CFGs and } L(G_1) = L(G_2) \}$$
 is not decidable

What's the difference between EQDFA and EQCFG?

To decide EQDFA we minimize both DFAs

But there is no method that, given a CFG or PDA, produces a unique equivalent minimal CFG or PDA

Universal Turing Machine and

Undecidability

Turing Machines versus computers

A computer is a machine that manipulates data according to a list of instructions

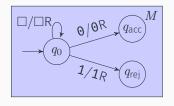
How does a Turing machine take a program as part of its input?

Universal Turing machine

The universal TM $\,U$ takes as inputs a program $\,M$ and a string $\,x$, and simulates $\,M$ on $\,w$

The program M itself is specified as a TM

Turing machines as strings



A Turing machine is $(Q, \Sigma, \Gamma, \delta, q_0, q_{\rm acc}, q_{\rm rej})$

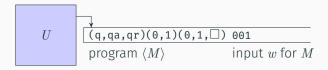
This Turing machine can be described by the string

$$\langle M \rangle = (\mathsf{q},\mathsf{qa},\mathsf{qr})(\mathsf{0},\mathsf{1})(\mathsf{0},\mathsf{1},\square)$$

$$((\mathsf{q},\mathsf{q},\square/\square R)(\mathsf{q},\mathsf{qa},\mathsf{0}/\mathsf{0R})(\mathsf{q},\mathsf{qr},\mathsf{1}/\mathsf{1R}))$$

$$(\mathsf{q})(\mathsf{qa})(\mathsf{qr})$$

Universal Turing machine



U on input $\langle M, w \rangle$:

Simulate M on input w If M enters accept state, U accepts If M enters reject state, U rejects

Acceptance of Turing machines

$$A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \}$$

U on input $\langle M, w \rangle$ simulates M on input w

$$M$$
 accepts w M rejects w M loops on w ψ U accepts $\langle M, w \rangle$ U rejects $\langle M, w \rangle$ U loops on $\langle M, w \rangle$

TM U recognizes A_{TM} but does not decide A_{TM}

Recognizing versus deciding

The language recognized by a TM ${\cal M}$ is the set of all inputs that ${\cal M}$ accepts

A TM decides language L if it recognizes L and halts on every input

A language L is decidable if some TM decides L