Turing Machines and Their Variants

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2018

Chinese University of Hong Kong

1/26

Turing machine may not halt

v ={0,1}

input: e

Inputs can be divided into three types:

{3 SN

Accept Reject Infinite loop

2/26

We say M halts on input z if there is a sequence of configurations
CO: Cla"'vck:

Cpy is starting C; yields Ciiq Cy Is accepting or rejecting

ATM M is a decider if it halts on every input

Language L is decidable if it is recognized by a TM that halts on
every input

3/26

Programming Turing machines: Are two strings equal?

Ly = {wHw | we {a,b}*}

Description of Turing Machine

1 Until you reach #

2 Read and remember entry

3 Write x

“ Move right past # and past all x's
5 If this entry is different, reject

6 Write x

7 Move left past # and to right of first x
& Ifyou see only x's followed by [OJ, accept

xbbaa#xbbaa
xxbaa#txbbaa
xxbaat#txbbaa

xxbaattxxbaa
xxbaa#txxbaa

4/26

Programming Turing machines: Are two strings equal?

Ly = {whw| we{a,b}*}

a/aR
b/bR X/XR everything else

alal
b/bL

5/26

Programming Turing machines: Are two strings equal?

input:
aab#aab

configurations:
qo aab#aab
X qa1 ab#taab
Xa qa1 b#taab
xab ¢a1 #aab
xab# ga2 aab
xab ¢ #xab
Xa g3 b#xab
X gz ab#txab
g3 xab#txab
X qo ab#xab

6/26

Programming Turing machines

Ly = {a’b’c* | ij = kand 4,7,k > 0}

High level description of TM: Example:

1 For every a: 1 aabbcccc

2 Cross off the same number of b's and c’s 2 aabbeecc

s Uncross the crossed b’s (but not the ¢’s) s aabbeecc

« Cross off this a « aabbeecc

s Ifall a’s and ¢’s are crossed off, accept s aabbeecc
: aabbeeee
s aabbeeee

¥ ={a,b} I'={a,b,c,a,b,€ 0}

7/26

Programming Turing machines

Ly = {a‘b’ck | ij = k and i, 4,k > 0}
Low-level description of TM:

Scan input from left to right to check it looks like aa*bb*cc*
Move the head to the first symbol of the tape
For every a:

Cross off the same number of b's and c's

Restore the crossed off b’s (but not the c’s)

Cross off this a

Ifall a's and ¢’s are crossed off, accept

8/26

Programming Turing machines

Ly = {a‘b’ck | ij = k and i, 4,k > 0}
Low-level description of TM:

Scan input from left to right to check it looks like aa*bb*cc*
Move the head to the first symbol of the tape How?
For every a:

Cross off the same number of b's and c's How?

Restore the crossed off b’s (but not the c’s)

Cross off this a

Ifall a's and ¢’s are crossed off, accept

8/26

Programming Turing machines

Implementation details:

Move the head to the first symbol of the tape:

Put a special marker on top of the first a aabbcccc
Cross off the same number of b’s and c¢'s: dabbcccc
Replace b by b aabbcccc
Move right until you see a ¢ aabbcccc
Replace c by € aabbeccc
Move left just past the last & dabbeccc
If any uncrossed b's are left, repeat aabbeccc

aabbeecc

Y ={a,b,c} I'={a,b,c,a,b,€,a,a 0}

9/26

Programming Turing machines: Element distinctness

Ly = {#to #tay .. Hay, | 2, € {0,1} and z; # ; for every ¢ # j}

Example: #01#0011#1 € Ls

High-level description of TM:

On input w

For every pair of blocks z; and z; in w
Compare the blocks z; and g;
If they are the same, reject

Accept

10/26

Programming Turing machines: Element distinctness

Ly = {#tm#tay .. Huy, | 2, € {0,1} and z; # z; for every ¢ # j}

Low-level desrciption:

0. Ifinputise, or has exactly one #, accept
1. Mark the leftmost # as # and move right #01#0011#1
2. Mark the next unmarked # #01#0011#1

11/26

Programming Turing machines: Element distinctness

Ly = {#tz #tay .. Hzy, | 2, € {0,1} and z; # z; for every ¢ # j}

3. Compare the two strings to the right of # #O1#0011#1
If they are equal, reject

4. Move the right # #014#0011#1
If not possible, move the left # to the next #
and put the right # on the next #
If not possible, accept

5. Repeat Step 3 #01#0011#1
#01#00114#1
#O1#0011#1

12/26

How to describe Turing Machines

Unlike for DFAs, NFAs, PDAs, we rarely give complete state diagrams
of Turing Machines

We usually give a high-level description

unless you're asked for a low-level description or even state diagram

We are interested in algorithms behind the Turing machines

13/26

Programming Turing machines: Graph connectivity

Ly = {{G) | G'is a connected undirected graph}

How do we feed a graph into a Turing Machine?

How to encode a graph G as a string (G)?

(1,2,3,4)((1,4),(2,3),(3,4),(4,2))

a a Conventions for describing graphs:
“ (nodes)(edges)
e G no node appears twice

edges are pairs (first node, second node)

14/26

Programming Turing machines: Graph connectivity

Ly = {(G) | G is a connected undirected graph}

High-level description:
On input (G)
0. Verify that (G) is the description of a graph

No node/edge repeats; Edge endpoints are
nodes

1. Mark the first node of G a ‘a
2. Repeat until no new nodes are marked: e‘

21 For each node, mark it if it is adjacent to an
already marked node

3. If all nodes are marked, accept; otherwise
reject

15/26

Programming Turing machines: Graph connectivity

Some low-level details:

0. Verify that (G) is the description of a graph
No node/edge repeats: Similar to Element distinctness

Edge endpoints are nodes: Also similar to Element distinctness

1. Mark the first node of G
Mark the leftmost digit with a dot, e.g. 12 becomes 12

2. Repeat until no new nodes are marked:
21 For each node, mark it if it is attached to an already marked node
For every dotted node « and every undotted node wv:

Underline both w and » from the node list

Try to match them with an edge from the edge list

. 16/26
If not found, remove underline from « and/or v and try another

Variants of Turing machines

Multitape Turing machine

(b[b[alb[O]
[3
control [a]bJa]OfO] -~

Transitions may depend on the contents of all cells under the heads

Different tape heads can move independent

17/26

Multitape Turing machine

{D oL
S

Multiple tapes are convenient

[bla[O]O -

[alb[a]O-

[ala[b]O[-
One tape can serve as temporary storage

18/26

How to argue equivalence

Multitape Turing machines are equivalent to singlne-tape Turing
machines

easy

multiple single
tapes tape

requires simulation

19/26

Simulating multitape Turing machine

[bla[OO]-
M | [a[b[b[O[- T = {a,b,0}
[ala][O0

s | |#]b]a]#]a|b]o]O]#]a]a]#|O]-

I'= {a7b!Daa7b:Da#}

20/26

Simulating multitape Turing machine

We show how to simulate a multitape Turing machine on a single
tape Turing machine

To be specific, let's simulate a 3-tape TM

Bl el
Multitape TM M |y11~~-l--~lzjsl~-lylel

Single tape TM S

Y
l#.I']_.I‘Q....I.'T...$i#y1y2...ys...yj#21Z2...Zt...zk

21/26

Simulating multitape Turing machine

Single-tape TM: Initialization

v
l ll.i!"' ’11101102. ..1Unif[jittj

S: On input wy ... wy:

Replace tape contents by #uwyws . . . wy, #O#0

Remember that M is in state ¢

22/26

Simulating multitape Turing machine

Single-tape TM: Simulating multitape TM moves

Suppose Multitape TM M moves like this:

{D o
2ok
@

We simulate the move on single-tape TM S like this

DDREEEBRGRRRAE

EEEEEPEEEEEEEE

23/26

Simulating multitape Turing machine

S given input wy . .. wy:
Replace tape contents by #uwyws . . . w, ##C]

Remember (in state) that M is in state go

S simulates a step of M:

Make a pass over tape to find z, 4, 2

Y
l#xlxg...:'v...:ci#ylyg...y...yj#zlzz...z...zk

z/x' A
. y/y'B
If M at state ¢, has transition ' 2/2'C @

update state/tape accordingly

If M reaches accept (reject) state, S accepts (rejects) 24126

To simulate a model M by another model N:

Say how the state and storage of N is used to represent the state
and storage of M

Say what should be initially done to convert the input of N

Say how each transition of M can be implemented by a sequence of
transitions of N

25/26

