Pumping Lemma for Context-Free Languages

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2018

Chinese University of Hong Kong

$$\begin{split} L_1 &= \{ \mathbf{a}^n \mathbf{b}^n \mid n \geqslant 0 \} \\ L_2 &= \{ z \mid z \text{ has the same number of a's and b's} \} \\ L_3 &= \{ \mathbf{a}^n \mathbf{b}^n \mathbf{c}^n \mid n \geqslant 0 \} \\ L_4 &= \{ z z^R \mid z \in \{ \mathbf{a}, \mathbf{b} \}^* \} \\ L_5 &= \{ z z \mid z \in \{ \mathbf{a}, \mathbf{b} \}^* \} \end{split}$$

These languages are not regular

Are they context-free?

An attempt

$$L_3 = \{ a^n b^n c^n \mid n \geqslant 0 \}$$

Let's try to design a CFG or PDA

$$S
ightarrow aBc \mid \varepsilon$$
 read a / push x read b / pop x ????

Suppose we could construct some CFG G for L_3

$$S\Rightarrow CC$$

$$\Rightarrow SBC$$
e.g.
$$S\rightarrow CC\mid BC\mid a$$

$$\Rightarrow SSBSC$$

$$\Rightarrow SSBBCC$$

$$C\rightarrow SB\mid c$$

$$\Rightarrow aSBBCC$$

$$\Rightarrow aBBCC$$

$$\Rightarrow aaBBCC$$

$$\Rightarrow aabBCC$$

$$\Rightarrow aabbCC$$

$$\Rightarrow aabbCC$$

 \Rightarrow aabbcc

Repetition in long derivations

If a derivation is long enough, some variable must appear twice on the same root-to-leave path in a parse tree

$$S \Rightarrow CC$$
$$\Rightarrow SBC$$

$$\Rightarrow SCSC$$

$$\Rightarrow SSBSC$$

$$\Rightarrow SSBBCC$$

$$\Rightarrow aSBBCC$$

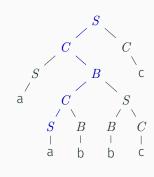
$$\Rightarrow$$
 aa $BBCC$

$$\Rightarrow$$
 aab BCC

$$\Rightarrow$$
 aabb CC

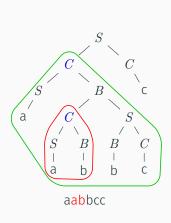
$$\Rightarrow$$
 aabbc C

$$\Rightarrow$$
 aabbcc



Pumping example

Then we can "cut and paste" part of parse tree



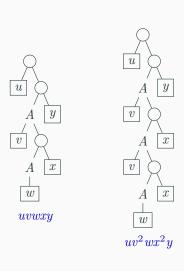


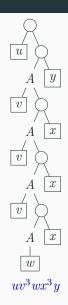
Pumping example

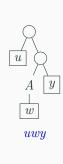
We can repeat this many times
$$aabbcc \Rightarrow aaabbcbcc \Rightarrow aaabbcbcbcc \Rightarrow \dots$$
 $\Rightarrow (a)^i ab(bc)^i c$

Every sufficiently large derivation will have a middle part that can be repeated indefinitely

Pumping in general







$$L_3 = \{ a^n b^n c^n \mid n \geqslant 0 \}$$

If L_3 has a context-free grammar G, then for any sufficiently long $s \in L(G)$

s can be split into s=uvwxy such that $L(\mathit{G})$ also contains uv^2wx^2y , uv^3wx^3y , ...

What happens if $s = a^m b^m c^m$

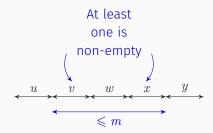
No matter how it is split, $uv^2wx^2y \notin L_3$

Pumping lemma for context-free languages

For every context-free language ${\it L}$

There exists a number m such that for every long string s in L $(|s| \ge m)$, we can write s = uvwxy where

- 1. $|vwx| \leqslant m$
- 2. $|vx| \ge 1$
- 3. For every $i\geqslant 0$, the string uv^iwx^iy is in L



Pumping lemma for context-free languages

To prove L is not context-free, it is enough to show that

For every m there is a long string $s \in L$, $|s| \geqslant m$, such that for every way of writing s = uvwxy where

- 1. $|vwx| \leqslant m$
- 2. $|vx| \ge 1$

there is $i \geqslant 0$ such that $uv^i wx^i y$ is not in L

Using the pumping lemma

$$L_3 = \{ a^n b^n c^n \mid n \geqslant 0 \}$$

- 1. for every m
- 2. there is $s = a^m b^m c^m$ (at least m symbols)
- 3. no matter how the pumping lemma splits s into uvwxy $(|vwx| \le m, |vx| \ge 1)$
- 4. $uv^2wx^2y \notin L_3$ (but why?)

Using the pumping lemma

Case 1: v or x contains two kinds of symbols

Then $uv^2wx^2y \notin L_3$ because the pattern is wrong

Case 2: v and x both contain (at most) one kind of symbol

aaa
$$\underbrace{a}_{v}$$
 b \underbrace{bb}_{x} bcccc

Then uv^2wx^2y does not have the same number of a's, b's and c's

Conclusion: $uv^2wx^2y \notin L_3$

Which is context-free?

$$L_1 = \{\mathbf{a}^n \mathbf{b}^n \mid n \geqslant 0\} \quad \checkmark$$

$$L_2 = \{z \mid z \text{ has the same number of a's and b's} \} \quad \checkmark$$

$$L_3 = \{\mathbf{a}^n \mathbf{b}^n \mathbf{c}^n \mid n \geqslant 0\} \quad \checkmark$$

$$L_4 = \{zz^R \mid z \in \{\mathbf{a}, \mathbf{b}\}^*\} \quad \checkmark$$

$$L_5 = \{zz \mid z \in \{\mathbf{a}, \mathbf{b}\}^*\}$$

$$L_5 = \{ zz \mid z \in \{a, b\}^* \}$$

- 1. for every m
- 2. there is $s = a^m b a^m b$ (at least m symbols)
- 3. no matter how the pumping lemma splits s into uvwxy $(|vwx| \leqslant m, |vx| \geqslant 1)$
- 4. Is $uv^2wx^2y \notin L_5$?

$$L_5 = \{ zz \mid z \in \{ a, b \}^* \}$$

- 1. for every m
- 2. there is $s = a^m b a^m b$ (at least m symbols)
- 3. no matter how the pumping lemma splits s into uvwxy $(|vwx| \le m, |vx| \ge 1)$
- 4. Is $uv^2wx^2y \notin L_5$?

$$L_5 = \{ zz \mid z \in \{a, b\}^* \}$$

- 1. for every m
- 2. there is $s = a^m b^m a^m b^m$ (at least m symbols)
- 3. no matter how the pumping lemma splits s into uvwxy $(|vwx| \leqslant m, |vx| \geqslant 1)$
- 4. Is $uv^iwx^iy \notin L_5$ for some i?

Recall that $|vwx| \leqslant m$

Three cases

- Case 1 aaa <u>aabbb</u> bbaaaaabbbbb vwx is in the first half of $a^mb^ma^mb^m$
- Case 2 aaaaaabb bbbaa aaabbbbb vwx is in the middle part of $a^mb^ma^mb^m$
- Case 3 aaaaabbbbbbaaa aabbb bbvwx is in the second half of $a^mb^ma^mb^m$

Apply pumping lemma with i=0

Case 1 aaa aabbb bbaaaaaabbbbb $uwy \ {\rm becomes} \ {\rm a}^j {\rm b}^k {\rm a}^m {\rm b}^m \text{, where } j < m \ {\rm or} \ k < m$

Case 2 aaaaabb \underbrace{bbbaa}_{vwx} aaabbbbbuwy becomes $\mathbf{a}^m\mathbf{b}^j\mathbf{a}^k\mathbf{b}^m$, where j < m or k < m

Case 3 aaaaabbbbbaaa \underbrace{aabbb}_{vwx} bb $uwy \text{ becomes a}^m b^m a^j b^k \text{, where } j < m \text{ or } k < m$

Not of the form zz

This covers all cases, so L_5 is not context-free