### PDA and CFG conversions

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2018

Chinese University of Hong Kong

#### CFGs and PDAs

L has a context-free grammar if and only if it is accepted by some pushdown automaton.



Will first convert CFG to PDA

### Convention

#### A sequence of transitions like



will be abbreviated as

$$q_0$$
  $\xrightarrow{x, a/bcd} q_1$ 

replace a by bcd on stack

# Converting a CFG to a PDA

Idea: Use PDA to simulate derivations 
$$A \to 0A1$$
 Example: 
$$A \to 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00\#11$$
 
$$B \to \#$$

#### Rules:

- 1. Write the start symbol A onto the stack
- 2. Rewrite variable on top of stack (in reverse) according to production

| PDA control                      |                              | stack          | input |
|----------------------------------|------------------------------|----------------|-------|
| write start variable             | $\varepsilon, \varepsilon/A$ | \$A            | 00#11 |
| replace by production in reverse | $\varepsilon, A/1A0$         | \$1 <i>A</i> 0 | 00#11 |

# Converting a CFG to a PDA

Idea: Use PDA to simulate derivations

 $A \rightarrow 0A1$ 

Example:

 $A \to B$  $B \to \#$ 

 $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00#11$ 

Rules:

- 1. Write the start symbol A onto the stack
- 2. Rewrite variable on top of stack (in reverse) according to production
- 3. Pop top terminal if it matches input

| PDA control                      |                              | stack           | input |
|----------------------------------|------------------------------|-----------------|-------|
| write start variable             | $\varepsilon, \varepsilon/A$ | \$A             | 00#11 |
| replace by production in reverse | $\varepsilon$ , $A/1A0$      | \$1A0           | 00#11 |
| pop terminal and match           | $0,0/\varepsilon$            | \$1A            | 0#11  |
| replace by production in reverse | $\varepsilon, A/1A0$         | \$11 <i>A</i> 0 | 0#11  |
|                                  |                              |                 |       |

4/12

# Converting a CFG to a PDA



$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00#11$$

### General CFG to PDA conversion



### From PDAs to CFGs



#### Simplified pushdown automaton:

- · Has a single accepting state
- Empties its stack before accepting
- · Each transition is either a push, or a pop, but not both

# Simplifying the PDA

### Single accepting state



#### Empties its stack before accepting

 $\varepsilon$ , a/ $\varepsilon$  for every stack symbol a



### Simplifying the PDA

#### Each transition either pushes or pops, but not both

$$\begin{array}{ccc}
 & a, b/c \\
\hline
 & q_0 \\
\hline
 & a, b/\varepsilon \\
\hline
 & q_{01} \\
\hline
 & \varepsilon, \varepsilon/c \\
\hline
 & q_1 \\
\hline
 & q_0 \\
\hline
 & a, b/\varepsilon \\
\hline
 & q_{01} \\
\hline
 & \varepsilon, \varepsilon/c \\
\hline
 & q_1 \\
\hline
 & q_0 \\
\hline
 & a, \varepsilon/b \\
\hline
 & q_{01} \\
\hline
 & \varepsilon, b/\varepsilon \\
\hline
 & q_1 \\
\hline
 & q$$

# Simplified PDA to CFG

For every pair (q,r) of states in PDA, introduce variable  ${\cal A}_{qr}$  in CFG

#### Intention:

 ${\cal A}_{qr}$  generates all strings that allow the PDA to go from q to r (with empty stack both at q and at r)

# Simplified PDA to CFG



Start variable:  $A_{pq}$  (initial state p, accepting state q)

### Example: Simplified PDA to CFG



productions:

variables:

start variable:

### Example: Simplified PDA to CFG

productions:

$$A_{02} \rightarrow A_{01}A_{12}$$

$$A_{01} \to A_{01} A_{11}$$

$$A_{12} \to A_{11}A_{12}$$

$$A_{11} \to A_{11}A_{11}$$

$$A_{11} \to 0A_{11}1$$

$$A_{11} \to 1A_{11}0$$

$$A_{02} \rightarrow A_{11}$$

$$A_{00} \rightarrow \varepsilon$$
,  $A_{11} \rightarrow \varepsilon$ ,

$$A_{22} \to \varepsilon$$

variables:  $A_{00}, A_{11}, A_{22}, A_{01}, A_{02}, A_{12}$ 

start variable:  $A_{02}$ 

### Example: Simplified PDA to CFG

variables:  $A_{00}, A_{11}, A_{22}, A_{01}, A_{02}, A_{12}$ 

start variable:  $A_{02}$ 

$$A_{02} \rightarrow A_{01}A_{12}$$

$$A_{01} \to A_{01}A_{11}$$

$$A_{12} \rightarrow A_{11}A_{12}$$

$$A_{11} \to A_{11}A_{11}$$

$$A_{11} \to 0A_{11}1$$

$$A_{11} \rightarrow 1A_{11}0$$

$$A_{02} \rightarrow A_{11}$$

$$A_{00} 
ightarrow arepsilon$$
,  $A_{11} 
ightarrow arepsilon$ ,

$$A_{22} \to \varepsilon$$