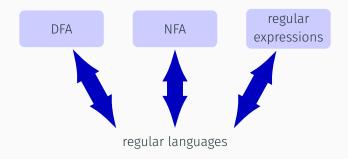
Equivalence of DFA and Regular Expressions

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2018

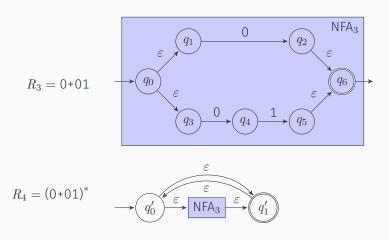

Chinese University of Hong Kong

Three ways of doing it

 $\Sigma = \{0, 1\}$

 $L = \{x \in \Sigma^* \mid x \text{ ends in 01}\}$

They are equally powerful



Examples: regular expression \rightarrow NFA

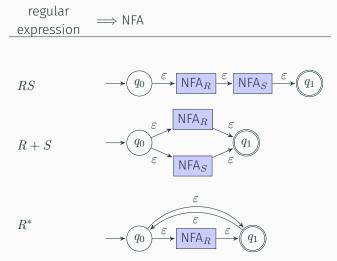
$$R_1 = 0$$
 \longrightarrow q_0 0 q_1

$$R_2 = 01$$
 $\longrightarrow q_0 \xrightarrow{0} q_1 \xrightarrow{1} q_2$

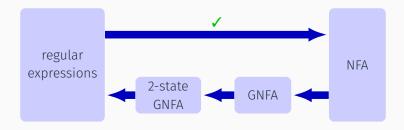
Examples: regular expression \rightarrow NFA

Regular expressions

In general, how do we convert a regular expression to an NFA?

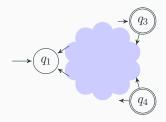

A regular expression over Σ is an expression formed by the following rules

- The symbols \varnothing and ε are regular expressions
- Every symbol in Σ is a regular expression
 - If $\Sigma = \{0,1\}$, then 0 and 1 are both regular expressions
- If R and S are regular expressions, so are R + S, RS and R^*

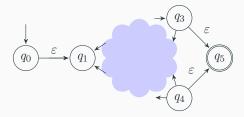

General method when $\Sigma = \{0,1\}$

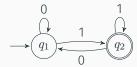
regular _expression	\Longrightarrow NFA
Ø	$\rightarrow q_0$
ε	$\longrightarrow q_0$
0	$\longrightarrow q_0 \xrightarrow{0} q_1$
1	$\longrightarrow q_0 \xrightarrow{1} q_1$

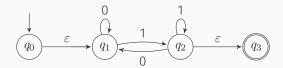
General method



Roadmap

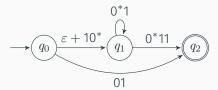

First we simplify the NFA so that


- It has exactly one accepting state
- · No arrows come into the start state
- No arrows go out of the accepting state



First we simplify the NFA so that

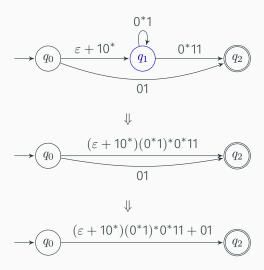
- It has exactly one accepting state
- · No arrows come into the start state
- No arrows go out of the accepting state



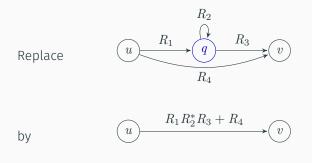
- It has exactly one accepting state ✓
- No arrows come into the start state ✓
- · No arrows go out of the accepting state \checkmark

Generalized NFAs

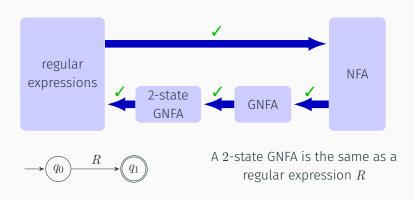
A generalized NFA is an NFA whose transitions are labeled by regular expressions, like



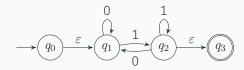
GNFA state elimination


We will eliminate every state but the start and accepting states

State elimination

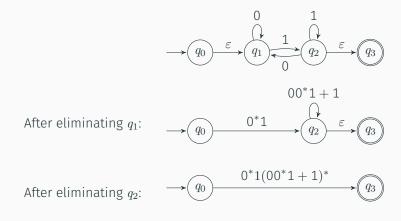

State elimination: general method

To eliminate state q, for every pair of states (u,v) such that $u \to q \to v$

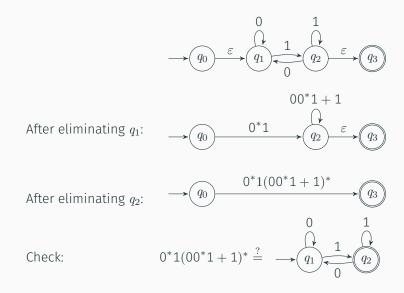


Remember to do this even when u = v

Roadmap

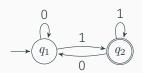


Conversion example



After eliminating q_1 :

Conversion example


Conversion example

Check your answer!

Check your answer!

All strings ending in 1 $(0+1)^*1$

$$0*1(00*1+1)*$$

Always ends in 1

$$= 0*1(0*1)*$$

Does every string ending in 1 have this form?
Yes