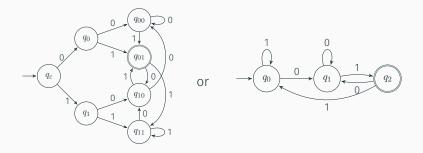
Nondeterministic Finite Automata

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2018

Chinese University of Hong Kong

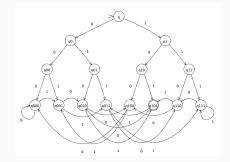
Construct a DFA over $\{0,1\}$ that accepts all strings ending in 01



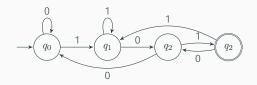
Three weeks later: DFA minimization

Another example from last lecture

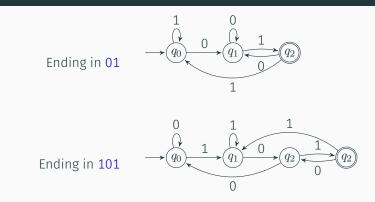
Construct a DFA over $\{0,1\}$ that accepts all strings ending in 101



or



String matching DFAs

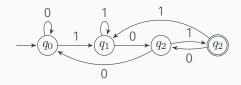


Fast string matching algorithms to turn a pattern into a string matching DFA and execute the DFA:

Boyer-Moore (BM) and Knuth-Morris-Pratt (KMP)

(won't cover in class)

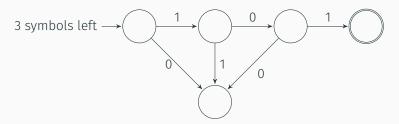
Nondeterminism



What problems can finite state machines solve?

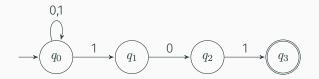
We'll answer this question in the next few lectures Useful to consider hypothetical machines that are nondeterministic Suppose we could guess when the input string has only 3 symbols left

Accept strings ending in 101:

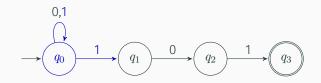


This is not a DFA!

A machine that allows us to make guesses

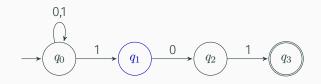


Each state can have zero, one, or more outgoing transitions labeled by the same symbol

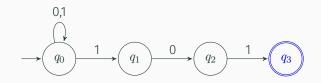


State q_0 has two transitions labeled 1

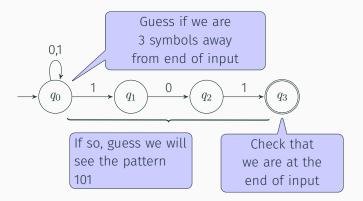
Upon reading 1, we have the choice of staying at q_0 or moving to q_1



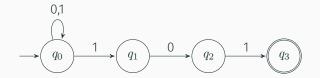
State q_1 has no transition labeled 1 Upon reading 1 at q_1 , die; upon reading 0, continue to q_2



State q_1 has no transition going out Upon reading 0 or 1 at q_3 , die



How to run an NFA



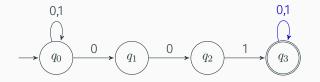
input: 01101

The NFA can have several active states at the same time NFA accepts if at the end, one of its active states is accepting

Construct an NFA over alphabet {0,1} that accepts all strings containing the pattern 001 somewhere

11001010, 001001, 111001should be accepted ε , 000, 010101should not

Construct an NFA over alphabet {0,1} that accepts all strings containing the pattern 001 somewhere



A nondeterministic finite automaton (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- $\cdot Q$ is a finite set of states
- + Σ is an alphabet
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow$ subsets of Q is a transition function
- $\cdot \ q_0 \in Q$ is the initial state
- $\cdot \ F \subseteq Q$ is a set of accepting states

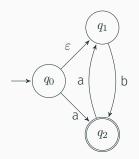
Differences from DFA:

- transition function δ can go into several states
- allows ε -transitions

The NFA accepts string x if there is some path that, starting from q_0 , ends at an accepting state as x is read from left to right

The language of an NFA is the set of all strings accepted by the NFA

 $\varepsilon\text{-transitions}$ can be taken for free:



accepts a, b, aab, bab, aabab, ...

rejects ε , aa, ba, bb, ...

Example

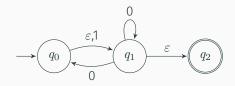
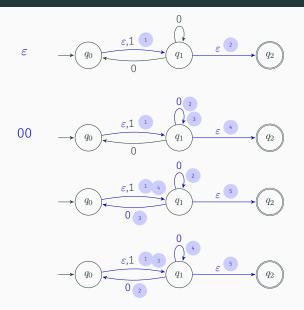


table of transition function δ

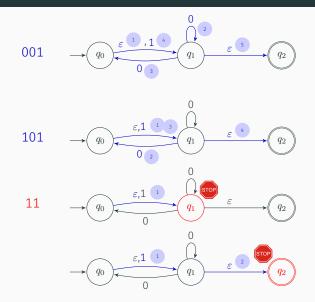
alphabet $\Sigma = \{0, 1\}$ states $Q = \{q_0, q_1, q_2\}$ initial state q_0 accepting states $F = \{q_2\}$

lable of		transition function o		
		inputs		
		0	1	ε
states	q_0	Ø	$\{q_1\}$	$\{q_1\}$
	q_1	$\{q_0, q_1\}$	Ø	$\{q_2\}$
	q_2	Ø	Ø	Ø

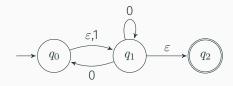
Some computational paths of the NFA



Some computational paths of the NFA



Language of this NFA



What is the language of this NFA?

Construct an NFA that accepts all strings with an even number of 0s or an odd number of 1s

Construct an NFA that accepts all strings with an even number of 0s or an odd number of 1s

