
## Week 3 Tutorial Session

Tutorial exercises include more problems than what a typical student can solve in 15–20 minutes. Don't be discouraged if you cannot solve all the problems within the time limit.

1. Convert the following NFA into a DFA using the algorithm from the lecture.



- 2. Prove that every NFA can be converted into an equivalent one that has a single accepting state.
- 3. (a) Write down the definition of regular languages over an alphabet  $\Sigma$ .
  - (b) Write down the definition of regular expressions over an alphabet  $\Sigma$ .
  - (c) Given a string w, define  $w^R$  as the string w in reverse order. That is, if  $w = w_1 w_2 \dots w_n$ , then  $w^R = w_n w_{n-1} \dots w_1$ . For example, if w = live, then  $w^R = \text{evil}$ .

Given a language L, define its reversal  $L^R$  as the set of strings in L in reverse. More precisely,  $L^R = \{w^R \mid w \in L\}$ . For example, if  $L = \{\text{live}, \text{raw}, \text{level}\}$ , then  $L^R = \{\text{evil}, \text{war}, \text{level}\}$ .

If L is a regular language, prove that  $L^R$  as also regular.