Cook-Levin Theorem

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2021

Chinese University of Hong Kong

1/18

Cook-Levin theorem (optional)

NP-completeness

P-complete

Theorem (Cook-Levin)
Every language in NP
polynomial-time reduces to
SAT

QUE

2/18

Cook-Levin theorem

Every L € NP polynomial-time reduces to SAT

Need to find a polynomial-time reduction R such that

L SAT
z Boolean formula ¢
z€ L e ¢ is satisfiable

3/18

NP-completeness of SAT

All we know: L has a polynomial-time verifier V

Tableau of computation history of

4
——
©0110#100
Vm 0 7110#100

z S

z€ Lifand only if
V accepts (z, s) for some s

1qacc Q -

4/18

Tableau of computation history

—_ S

90110#100

0 110# 100 n = length of z
height of tableau is O(n°) for

some constant ¢
T : width of tableau is O(nc)

k possible tableau symbols

1Gacc Q|-

s = True if cell (T, S) contains symbol u
" False otherwise

5/18

Reduction to SAT

L SAT
z Boolean formula ¢
z€ L —> ¢ Is satisfiable

Will design a formula ¢ such that

variables of ¢ TS0

assignment to zr,s.., assignment to tableau symbols
satisfying assignment accepting computation history
¢ is satisfiable V accepts (z, s) for some s

T T

6/18

Reduction to SAT

Will construct in O(n?¢) time a formula ¢ such that
o(z) is True precisely when the assignment to {zr,s,.} represents
legal and accepting computation history

G0 110#100O
¢:¢cell/\¢init/\¢move/\¢acc enlioe#ioed
¢cell : Exactly one symbol in each
cell
Qinit : First row is goz#ts for some s
dmove : Moves between adjacent
rows follow the transitions of V
@acc : Last row contains gacc 19acc @ -

7/18

dcell - €xactly one symbol per cell

¢cell = (bcetl,l,l ARRRA ¢celt,#rows,#cols where

deel, 7,5 = (T1,51 V-V T1,5%) at least one symbol

ANzr.51 N TT,52)

ANzr.s1 N TT,83) _
no two symbols in one cell

ANTr,8 k-1 N TT,5.k)

8/18

First row is goztts for some s

Dinit = T1,1,g90 N T1,2,20 N+ A T1 g1z, N\ L1 np s

Last row contains gacc Somewhere

¢acc = THrows,1, gacc VeV Trows, teols, gacc

9/18

Legal and illegal transitions windows

legal windows illegal windows
abx | - - [gsab] -
abx | - | abgs |~
agqsa | - - | q3q3a| -

goaX | - D | X |-
a/xL

aba |- -~ |agza |-
abge | - | geab |-
aaldl| - - |agsal -
xald | - oo ageX |

10/18

dmove : Moves between rows follow transitions of V

ap az as

by ba b3

1Gacc Q -

¢move = d)move,l,l ARERWAN ¢move,#rows—1,#cols—2

TT,8,a1 N\ XT,54+1,a5 N\ TT,5+2,a3/\
d)move.,T,S = \/

aragas] \TT+1,5,b1 N TT41,841,by N TT41,5+42,bs

11/18

NP-completeness of SAT
z Boolean formula ¢

z€ L —> ¢ is satisfiable

Let V' be a polynomial-time verifier for L

R =0ninput z
1. Construct the formulas ¢cel, Ginits Pmove, Pace
2. OUtDUt ¢ = (bcetl A Qj)init A (bmove A ¢acc

R takes time O(n?°)

V accepts (z, s) for some s if and only if ¢ is satisfiable

12/18

NP-completeness: More
examples

Cover for triangles

k-cover for triangles: k vertices that touch all triangles

Has 2-cover for triangles?
Yes

Has 1-cover for triangles?
No, it has two vertex-disjoint triangles

TRICOVER = {(G, k) | G has a k-cover for triangles}

TRICOVER is NP-complete

13/18

Step 1: TRICOVER is in NP

What is a solution for TRICOVER?
A subset of vertices like {D, F}

V = 0n input (G, k, S), where Sis a set of k vertices f\—B
1. For every triple (u, v, w) of vertices: ¢
If (u, v), (v, w), (w, u) are all edges in G:
If none of u, v, ware in S, reject

2. Otherwise, accept

Running time = O(n3)

14/18

Step 2: Some NP-hard problem reduces to TRICOVER

VC = {(G, k) | G has a vertex cover of size k}
Some vertex in every edge is covered

TRICOVER = {(G, k) | G has a k-cover for triangles}
Some vertex in every triangle is covered

Idea: replace edges by triangles

[N = LN

vertex cover in G cover for triangles in G’

15/18

VC polynomial-time reduces to TRICOVER

R = On input (G, k), where graph G has n vertices and m edges
1. Construct the following graph G":
G’ has n+ m vertices:
v1,..., U, are vertices from G
introduce a new vertex u;; for every edge (v;, v;) of G
For every edge (v;, v;) of G:
include edges (1)7;, ’Uj), (1}7;, uij), (uij, Uj) in G
2. Output (G, k)

Running time is O(n + m)

16/18

Step 3: Argue correctness (forward)

(G, kyeVC = (G, k) € TRICOVER

il) m;
G has a k-vertex cover S G’ has a k-triangle cover S

old triangles from G are covered
new triangles in G’ also covered

17/18

Step 3: Argue correctness (backward)

(G,K eVC <« (G, k) e TRICOVER

&O -

G has a k-vertex cover &' G’ has a k-triangle cover S
S is obtained after moving Some vertices in S may not
some vertices of S come from G!

Since S covers all triangles But we can move them and
in &, it covers all edges in G still cover the same triangle

18/18

	Cook-Levin theorem (optional)
	NP-completeness: More examples

