Undecidability and Reductions
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2021

Chinese University of Hong Kong

1/32

Undecidability

At = {(M, w) | Turing machine M accepts input w}

Turing's Theorem
The language Ay is undecidable

Note: a Turing machine M may take as input its own description (M)

2/32

Turing’s Theorem: Proof sketch (in Python)

Suppose function H(M) correctly decides whether program M halts,
given its source code (M)

>>> M = "x = 1" >>> M =
>>> print(H(M)) while True:

True continue

>>> print(H(M))
False

D checks whether itself halts using H and does the opposite

def D():
if H(D):
loop_forever ()

Does D halt?

3/32

Formal proof of Turing’s Theorem

Proof by contradiction:

Suppose Ay is decidable, then some TM H decides Amy:

accept if M accepts w
(M, w) —
eject if M rejects or loops on w

4/32

Formal proof of Turing’s Theorem

Proof by contradiction:

Suppose Ay is decidable, then some TM H decides Amy:

accept if M accepts w
(M, w) —
eject if M rejects or loops on w

Construct a new TM D (that uses H as a subroutine):

Turing machine D: On input (M)
1. Run Hon input (M, (M))
2. Output the opposite of H: If Haccepts, reject; if H rejects, accept

4/32

Formal proof of Turing’s Theorem

accept if M rejects or loops on (M)

(M) —
eject if M accepts (M)
What happens when M = D?
accept if Drejects or loops on (D)
(D)

reject if D accepts (D)

5/32

Formal proof of Turing’s Theorem

accept if M rejects or loops on (M)

(M) —
eject if M accepts (M)
What happens when M = D?
accept if D rejects orleeps on (D)
(D)

reject if D accepts (D)

H never loops indefinitely, neither does D

If D rejects (D), then D accepts (D)
If D accepts (D), then D rejects (D)

Contradiction! D cannot exist! H cannot exist!

5/32

Proof of Turing’s theorem: conclusion

Proof by contradiction

Assume Ay is decidable
Then there are TM H and D

But D cannot exist!

Conclusion

The language Amy is undecidable

6/32

Diagonalization

all possible inputs w

€ 0 1 00

» M | acc rej rej acc

(D) o 5

< My | rej acc loop rej

% fé Ms | rej loop rej rej

a € M |acc rej acc loop
o ™
a &
=2

Write an infinite table for the pairs (M, w)

(Entries in this table are all made up for illustration)

7/32

Only look at those w that describe Turing machines

inputs w

(M) (Mp) (Ms) (M)

w»n Mp | acc loop rej rej

() Q Q g

s M rej rej acc rej

%fé Ms | loop acc loop acc

‘@ £ M, | acc acc loop acc
o ™
a &
= 2

Diagonalization

8/32

Diagonalization

inputs w
(M) (M) (Ms) (My)
w» Mp | acc loop rej rej
() 0 o 0
< M rej rej acc rej
% § Ms | loop acc loop acc
‘» €
2w :
2= D rej acc acc rej
< P

If Aty is decidable, then TM D is in the table

9/32

Diagonalization

inputs w
(M) (Mz) (Ms) (My)
w» My | |acc| loop rej rej
(<] . . .
S M rej acc rej
v 5
= © M | loop acc acc
=8 M
¢ B 1
=5 D | re acc acc rej
o =

D does the opposite of the diagonal entries
accept if M rejects or loops on (M)

(M) —
eject if M accepts (M)

10/32

Diagonalization

inputs w
(M) (Mp) (M) (Mg) .. (D)
wn M | |acc| loop rej rej loop
()
£ M rej rej acc rej .. acc
v 5 .
= © M; | loop acc loop acc rej
=] g’ : :
=5 D rej acc acc rej ?
©

We run into trouble when we look at (D, (D))

1/32

Unrecognizable languages

The language Ay is recognizable but not decidable

How about languages that are not recognizable?

Am = {(M,w) | Mis a TM that does not accept w}
= {(M,w) | Mrejects or loops on input w}

Claim

The language Ay is not recognizable

12/32

Unrecognizable languages

Theorem
If L and L are both recognizable, then L is decidable

Proof of Claim from Theorem:

We know Amy is recognizable

if Arw were also, then Ay would be decidable

But Turing’s Theorem says Ay is not decidable

13/32

Unrecognizable languages

Theorem
If L and L are both recognizable, then L is decidable

Proof idea (flawed):
Let M = TM recognizing L, M = TM recognizing L
The following Turing machine N decides L:

Turing machine N: On input w
1. Simulate M on input w. If M accepts, accept
2. Simulate M on input w. If M" accepts, reject

14/32

Unrecognizable languages

Theorem
If L and L are both recognizable, then L is decidable

Proof idea (flawed):
Let M = TM recognizing L, M = TM recognizing L
The following Turing machine N decides L:

Turing machine N: On input w
1. Simulate M on input w. If M accepts, accept
2. Simulate M on input w. If M" accepts, reject

Problem: If M loops on w, we will never go to step 2

14/32

Unrecognizable languages

Theorem
If L and L are both recognizable, then L is decidable

Proof idea (2nd attempt):
Let M = TM recognizing L, M = TM recognizing L
The following Turing machine N decides L:

Turing machine N: On input w
Fort=0,1,2,3,...
Simulate first ¢ transitions of M on input w.
If M accepts, accept
Simulate first ¢ transitions of M’ on input w.
If M accepts, reject

15/32

Reductions

Program S s Program R
reduces to ¥ solves
Problem B ~ =oossssp- Problem A

Reducing Bto A
Transform program R that solves A into program S that solves B

To reduce Bto A means solving problem B using subroutine R as a
blackbox
Example from Lecture 17
Apra = {(D, w) | D is a DFA that accepts input w}
Anra = {(N,w) | N'is an NFA that accepts input w}
Anra reduces to Aprs (by converting NFA into DFA)

16/32

Reductions in this course

Program S~ Program R
<4 solves S <4 solves
Problem B~ =eossp- Problem A

If language B reduces to language A, and B is undecidable
then A is also undecidable

Steps for showing a language A to be undecidable:

1. If some TM R decides A
2. Using R, build another TM S'that decides B = Ay

But by Turing's theorem, Ay is not decidable

17/32

Another undecidable language

HALTtm = {(M, w) | M is a TM that halts on input w}

We'll show:

HALTy is an undecidable language

We will argue that
If HALT1y is decidable, then so is A

18/32

Undecidability of halting

If HALTq can be decided, so can Ay

HALTm = {{(M,w) | Mis a TM that halts on input w}
A = {(M,w) | Mis a TM that accepts input w}

Suppose HALTyy is decidable by a Turing machine H
Then the following TM S decides Ay
Turing machine S: On input (M, w)
Run H on input (M, w)
If H rejects, reject

If Haccepts, run the universal TM U on input (M, w)
If U accepts, accept; else reject

19/32

Mapping reductions

Program S Program R
4 solves e 4 solves
Problem B~ = Problem A

Special kind of reduction: program fsuch that
instanceze B < flr)y€ A and fneverinfinite loops

If 2 is a Yes-instance to B, then f(z) is a Yes-instance to A

If zis a No-instance to B, then f(z) is a No-instance to A

Given program R deciding problem A, and reduction f

Program S: On input =

Run fon zto get f(x)
If R accepts f(x), accept; else reject

20/32

Example 1

Ay ={(M) | Mis a TM that accepts input e}

Is A%, decidable? Why?

21/32

Example 1

Ay ={(M) | Mis a TM that accepts input e}
Is A%, decidable? Why?

Undecidable!
Intuitive reason:
To know whether M accepts € seems to require simulating M

But then we need to know whether M halts

Let’s justify this intuition

21/32

Example 1: Implementing a mapping reduction
M w 4)

M should be a Turing machine such that
M oninpute = Mon input w
Turing machine M’: Oninput 2z
1. Simulate Mon input w
2. If M accepts w, accept
3. If M rejects w, reject

- If M accepts w, M’ accepts
- If Mrejects w, M rejects e

- If M loops on w, M’ loops on &

22/32

(M) accept if M accepts w
(M, w) ? R
reject otherwise

Turing machine S: On input (M, w) where Mis aTM
1. Construct the following TM M':
M = a TM such that on input 2

Simulate M on input w and accept/reject according to M
2. Run Ron input (M) and accept/reject according to R

23/32

Example 1: The formal proof

Ary = {(M) | Mis a TM that accepts input ¢}
A = {{(M,w) | Mis a TM that accepts input w}

Consider a mapping reduction that turns (M, w) into (M’), where

M = a TM such that on input z
Simulate M on input w and accept/reject according to M

If some Turing machine R decides A%, then some Turing machine S
decides Ay, which is impossible

2432

Example 2

Ay ={(M) | Mis a TM that accepts some input strings}
Is A7y, decidable? Why?

Undecidable!
Intuitive reason:

To know whether M accepts some strings seems to require
simulating M

But then we need to know whether M halts

Let’s justify this intuition

25/32

Implementing a mapping reduction

Task: Given (M, w), construct M so that
If M accepts w, then M’ accepts some input

If M does not accept w, then M accepts no inputs

TM M': Oninput z
1. Simulate M on input w
2. If M accepts, accept
3. Otherwise, reject

26/32

Example 2: The formal proof

Yy ={(M)| Mis a TM that accepts some input}
Am = {(M,w) | Mis a TM that accepts input w}

Consider a mapping reduction that turns (M, w) into (M), where

M = aTM such that on input z
Simulate M on input w and accept/reject according to M

If some Turing machine R decides A7), then some Turing machine S
decides Ay, which is impossible

27/32

Example 3

Em = {{(M) | Mis a TM that accepts no input}

Is Ery decidable?

Undecidable! We will show:
If Frm can be decided by some TM R
Then A7, can be decided by another TM S
= {(M) | Mis aTM that accepts some input strings}

28/32

Example 3

Em = {(M) | Mis a TM that accepts no input}
Tw={(M) | Mis aTM that accepts some input}

Then Emy = AY, (except ill-formatted strings, which we will ignore)
Suppose Epy can be decided by some TM R
Consider the following Turing machine S
TM S: On input (M) where MisaTM
1. Run R on input (M)

2. If R accepts, reject
3. If R rejects, accept

Then S decides A7), a contradiction

29/32

Example 4

EQmm = {(My, M5) | My and M, are TMs such that L(M;) = L(Ms)}
Is EQu decidable?

Undecidable!
We will show that EQmy can be decided by some TM R
then Ery can be decided by another TM §

30/32

Example 4: Setting up the reduction

EQm = {(M, M) | My and My are TMs such that L(M;) = L(Ms)}
Em = {(M) | Mis a TM that accepts no input}

Given (M), we need to construct (M, M) so that

- If M accepts no input, then M; and M, accept the same set of
inputs

- If M accepts some input, then M; and M, do not accept the
same set of inputs

Idea: Make M7 = M
Make M, accept nothing

31/32

Example 4: The formal proof

EQm = {(My, M) | My and M are TMs such that L(M;) = L(M2)}
Em = {(M) | Mis a TM that accepts no input}

Suppose EQqy is decidable and R decides it
Consider the following Turing machine S
TM S: Oninput (M) where MisaTM

1. Construct a TM M, that rejects every input z

2. Run Ron input (M, Ms) and accept/reject according to R
Then Saccepts (M) if and only if M accepts no input

So S decides Epy which is impossible

32/32

	Reductions

