
Turing Machines
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2021

Chinese University of Hong Kong

1/16



Looping

Turing machine may not halt

q0

qacc

qrej

□/□R
0/0R

1/1R

Σ = {0, 1}

input: ε

Inputs can be divided into three types:

qacc
Accept

qrej
Reject Infinite loop

2/16



Halting

We say M halts on input x if there is a sequence of configurations
C0,C1, . . . ,Ck

C0 is starting Ci yields Ci+1 Ck is accepting or rejecting

A TM M is a decider if it halts on every input

A TM M decides a language L if M is a decider and recognizes L

Language L is decidable if it is recognized by a TM that halts on
every input

3/16



Programming Turing machines: Are two strings equal?

L1 = {w#w | w ∈ {a,b}∗}

Description of Turing Machine

1 Until you reach #
2 Read and remember entry xbbaa#xbbaa
3 Write x xxbaa#xbbaa
4 Move right past # and past all x’s xxbaa#xbbaa
5 If this entry is different, reject
6 Write x xxbaa#xxbaa
7 Move left past # and to right of first x xxbaa#xxbaa
8 If you see only x’s followed by □, accept

4/16



Programming Turing machines: Are two strings equal?

L1 = {w#w | w ∈ {a,b}∗}

q0 q1 qacc

qa1 qa2

qb1 qb2

q2 q3

qrej

a/
xR

2
3

b/xR
2

3

#/#R 1

x/xR

□/□R

a/aR
b/bR

#/#R 4

x/xR

a/aR
b/bR

#/#R 4

x/xR

a/xL
5

6

b/
xL

5
6

x/xL

#/#L

a/aL
b/bL

x/xR

7

8

everything else

5/16



Programming Turing machines: Are two strings equal?

q0 q1 qacc

qa1 qa2

qb1 qb2

q2 q3

qrej

a/
xR

2
3

b/xR
2

3

#/#R 1

x/xR

□/□R

a/aR
b/bR

#/#R 4

x/xR

a/aR
b/bR

#/#R 4

x/xR

a/xL
5

6

b/
xL

5
6

x/xL

#/#L

a/aL
b/bL

x/xR

7

8

everything else

input:
aab#aab

configurations:
q0 aab#aab
x qa1 ab#aab
xa qa1 b#aab
xab qa1 #aab
xab# qa2 aab
xab q2 #xab
xa q3 b#xab
x q3 ab#xab
q3 xab#xab
x q0 ab#xab

...

6/16



Programming Turing machines

L2 = {aibjck | ij = k and i, j, k > 0}

High level description of TM: Example:
1 For every a: 1 aabbcccc
2 Cross off the same number of b’s and c’s 2 aabbcccc
3 Uncross the crossed b’s (but not the c’s) 3 aabbcccc
4 Cross off this a 4 aabbcccc
5 If all a’s and c’s are crossed off, accept 5 aabbcccc

2 aabbcccc
3 aabbcccc

Σ = {a,b,c} Γ = {a,b,c,a,b,c,□}

7/16



Programming Turing machines

L2 = {aibjck | ij = k and i, j, k > 0}

Low-level description of TM:

Scan input from left to right to check it looks like aa∗bb∗cc∗

Move the head to the first symbol of the tape

How?

For every a:
Cross off the same number of b’s and c’s

How?

Restore the crossed off b’s (but not the c’s)
Cross off this a

If all a’s and c’s are crossed off, accept

8/16



Programming Turing machines

L2 = {aibjck | ij = k and i, j, k > 0}

Low-level description of TM:

Scan input from left to right to check it looks like aa∗bb∗cc∗

Move the head to the first symbol of the tape How?

For every a:
Cross off the same number of b’s and c’s How?

Restore the crossed off b’s (but not the c’s)
Cross off this a

If all a’s and c’s are crossed off, accept

8/16



Programming Turing machines

Implementation details:

Move the head to the first symbol of the tape:
Put a special marker on top of the first a ȧabbcccc

Cross off the same number of b’s and c’s: ȧabbcccc
Replace b by b ȧabbcccc
Move right until you see a c ȧabbcccc
Replace c by c ȧabbcccc
Move left just past the last b ȧabbcccc
If any uncrossed b’s are left, repeat ȧabbcccc

ȧabbcccc

Σ = {a,b,c} Γ = {a,b,c,a,b,c, ȧ, ȧ,□}

9/16



Programming Turing machines: Element distinctness

L3 = {#x1#x2 . . .#xm | xi ∈ {0,1}∗ and xi ̸= xj for every i ̸= j}

Example: #01#0011#1 ∈ L3

High-level description of TM:

On input w

For every pair of blocks xi and xj in w

Compare the blocks xi and xj

If they are the same, reject

Accept

10/16



Programming Turing machines: Element distinctness

L3 = {#x1#x2 . . .#xm | xi ∈ {0,1}∗ and xi ̸= xj for every i ̸= j}

Low-level desrciption:

0. If input is ε, or has exactly one #, accept
1. Mark the leftmost # as #̇ and move right #̇01#0011#1
2. Mark the next unmarked # #̇01#̇0011#1

11/16



Programming Turing machines: Element distinctness

L3 = {#x1#x2 . . .#xm | xi ∈ {0,1}∗ and xi ̸= xj for every i ̸= j}

3. Compare the two strings to the right of #̇ #̇01#̇0011#1
If they are equal, reject

4. Move the right #̇ #̇01#0011#̇1
If not possible, move the left #̇ to the next #
and put the right #̇ on the next #
If not possible, accept

5. Repeat Step 3 #̇01#0011#̇1
#01#̇0011#̇1
#01#̇0011#̇1

12/16



How to describe Turing Machines

Unlike for DFAs, NFAs, PDAs, we rarely give complete state diagrams
of Turing Machines

We usually give a high-level description

unless you’re asked for a low-level description or even state diagram

We are interested in algorithms behind the Turing machines

13/16



Programming Turing machines: Graph connectivity

L4 = {⟨G⟩ | G is a connected undirected graph}

How do we feed a graph into a Turing Machine?

How to encode a graph G as a string ⟨G⟩?

1 2

3 4

(1,2,3,4)((1,4),(2,3),(3,4),(4,2))

Conventions for describing graphs:

(nodes)(edges)
no node appears twice
edges are pairs (first node, second node)

14/16



Programming Turing machines: Graph connectivity

L3 = {⟨G⟩ | G is a connected undirected graph}

High-level description:
On input ⟨G⟩
0. Verify that ⟨G⟩ is the description of a graph
No node/edge repeats; Edge endpoints are
nodes

1. Mark the first node of G
2. Repeat until no new nodes are marked:

2.1 For each node, mark it if it is adjacent to an
already marked node

3. If all nodes are marked, accept; otherwise
reject

1 2

3 4

15/16



Programming Turing machines: Graph connectivity

Some low-level details:

0. Verify that ⟨G⟩ is the description of a graph
No node/edge repeats: Similar to Element distinctness
Edge endpoints are nodes: Also similar to Element distinctness
1. Mark the first node of G
Mark the leftmost digit with a dot, e.g. 12 becomes 1̇2
2. Repeat until no new nodes are marked:
2.1 For each node, mark it if it is attached to an already marked node
For every dotted node u and every undotted node v:
Underline both u and v from the node list
Try to match them with an edge from the edge list
If not found, remove underline from u and/or v and try another

pair

16/16


