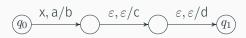
PDA and CFG conversions

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2021

Chinese University of Hong Kong

CFGs and PDAs


L has a context-free grammar if and only if it is accepted by some pushdown automaton.

Will first convert CFG to PDA

Convention

A sequence of transitions like

will be abbreviated as

$$q_0$$
 $\xrightarrow{x, a/bcd} q_1$

replace a by bcd on stack

Converting a CFG to a PDA

Idea: Use PDA to simulate derivations
$$A \to 0A1$$
 Example:
$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00\#11$$

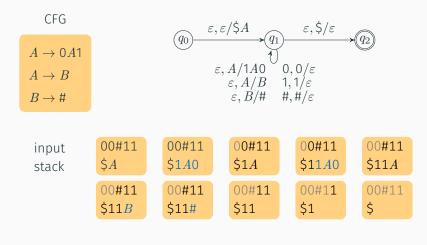
$$B \to \#$$

Rules:

- 1. Push start symbol A onto stack
- 2. Rewrite top variable on stack based on production (reversed)

PDA control		stack	input
push start variable	$\varepsilon, \varepsilon/\A	\$A	00#11
replace by production in reverse	$\varepsilon, A/1A0$	\$1A0	00#11

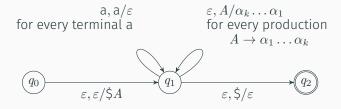
Converting a CFG to a PDA


Idea: Use PDA to simulate derivations
$$A \to 0A1 \\ \text{Example:} \\ A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00\#11$$

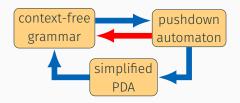
$$B \to \#$$

Rules:

- 1. Push start symbol A onto stack
- 2. Rewrite top variable on stack based on production (reversed)
- 3. Pop top terminal if it matches input


PDA control		stack	input
push start variable	$\varepsilon, \varepsilon/\A	\$A	00#11
replace by production in reverse	ε , $A/1A0$	\$1 <i>A</i> 0	00#11
pop terminal and match	$0,0/\varepsilon$	\$1A	0#11
replace by production in reverse	$\varepsilon, A/1A0$	\$11 <i>A</i> 0	0#11
	:		

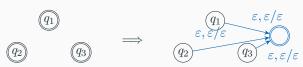
Converting CFG ightarrow PDA



$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00#11$$

General CFG → PDA conversion

From PDAs to CFGs



Simplified pushdown automaton:

- · Has a single accepting state
- Empties its stack before accepting
- · Each transition is either a push, or a pop, but not both

Simplifying the PDA

Single accepting state

Empties its stack before accepting

 ε , a/ ε for every stack symbol a

Simplifying the PDA

Each transition either pushes or pops, but not both

$$\begin{array}{ccc}
q_0 & a, b/c \\
\hline
q_0 & a, b/\varepsilon \\
\hline
q_0 & a, b/\varepsilon \\
\hline
q_0 & c, \varepsilon/c \\
\hline
q_1 & c, \varepsilon/c \\
\hline
q_2 & c, \varepsilon/c \\
\hline
q_1 & c, \varepsilon/c \\
\hline
q_2 & c, \varepsilon/c \\
\hline
q_3 & c, \varepsilon/c \\
\hline
q_4 & c, \varepsilon/c \\
\hline
q_5 & c, \varepsilon/c \\
\hline
q_5 & c, \varepsilon/c \\
\hline
q_5 & c, \varepsilon/c \\
\hline
q_6 & c, \varepsilon/c \\
\hline
q_7 & c, \varepsilon/c \\
\hline
q_8 & c, \varepsilon/c \\
\hline
q_8 & c, \varepsilon/c \\
\hline
q_9 & c, \varepsilon/c$$

Simplified PDA to CFG

For every pair (q,r) of states in PDA, introduce variable A_{qr} in CFG

Intention:

 A_{qr} generates all strings that allow the PDA to go from q to r (with empty stack both at q and at r)

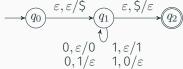
Simplified PDA to CFG

PDA	CFG
\overline{q}	$A_{qq} \to \varepsilon$
p q q	$A_{pr} \to A_{pq} A_{qr}$
$p \xrightarrow{a, \varepsilon/x} q$	$A_{ps} ightarrow \mathrm{a} A_{qr} \mathrm{b}$
$ \overbrace{b, x/\varepsilon} s $	$a = \varepsilon \text{ or } b = \varepsilon$ allowed

Notation: $p \longrightarrow q$ means p can reach q through a path

Start variable: A_{pq} (initial state p, accepting state q)

Example: Simplified PDA to CFG



productions:

variables:

start variable:

Example: Simplified PDA to CFG

productions:

poductions:

$$A_{00} \rightarrow \varepsilon$$

 $A_{11} \rightarrow \varepsilon$
 $A_{22} \rightarrow \varepsilon$
 $A_{02} \rightarrow A_{01}A_{12}$
 $A_{01} \rightarrow A_{01}A_{11}$
 $A_{12} \rightarrow A_{11}A_{12}$
 $A_{11} \rightarrow A_{11}A_{11}$
 $A_{11} \rightarrow 0A_{11}1$
 $A_{11} \rightarrow 1A_{11}0$

 $A_{02} \rightarrow A_{11}$

variables: $A_{00}, A_{11}, A_{22},$ A_{01}, A_{02}, A_{12}

start variable: A_{02}

Example: Simplified PDA to CFG

variables: $A_{00}, A_{11}, A_{22}, A_{01}, A_{02}, A_{12}$

start variable: A_{02}

productions:

$$A_{00} \to \varepsilon \\ A_{11} \to \varepsilon \\ A_{22} \to \varepsilon \\ A_{02} \to A_{01}A_{12} \\ A_{01} \to A_{01}A_{11} \\ A_{12} \to A_{11}A_{12} \\ A_{11} \to A_{11}A_{11} \\ A_{11} \to 0A_{11}1$$

 $A_{11} \to 1A_{11}0$ $A_{02} \to A_{11}$