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Context-free versus regular

Write a CFG for the language (0+ 1)∗111

S → U111
U → 0U | 1U | ε

Can you do so for every regular language?

Every regular language is context-free

regular
expression NFA DFA
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From regular to context-free

regular expression ⇒ CFG

∅ grammar with no rules

ε S → ε

x (alphabet symbol) S → x

E1 + E2 S → S1 | S2

E1E2 S → S1S2

E∗
1 S → SS1 | ε

S becomes the new start variable
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Context-free versus regular

Is every context-free language regular?

S → 0S1 | ε L = {0n1n | n ⩾ 0}

Is context-free but not regular

regular

context-free
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Is every context-free language regular?
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Ambiguity



Ambiguity

E → E+E | E*E | (E) | N
N → 1 | 2

1+2*2

*

+

1 2

2

7
= 6

+

1 *

2 2

= 5

A CFG is ambiguous if some string has more than one parse tree
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Example

Is S → SS | x ambiguous?

Yes, because
S

S

S

x

S

x

S

x

S

S

x

S

S

x

S

x

Two parse trees for xxx
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Disambiguation

S → SS | x =⇒ S → Sx | x

S

S

S

x

x

x

Sometimes we can rewrite the grammar to remove ambiguity
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Disambiguation

E → E+E | E*E | (E) | N
N → 1 | 2

+ and * have the same precedence!

Decompose expression into terms and factors

2 * ( 1 + 2 * 2 )
F F

TT

FT
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Disambiguation

E → E+E | E*E | (E) | N
N → 1 | 2

An expression is a sum of one or more terms
E → T | E+T

Each term is a product of one or more factors
T → F | T*F

Each factor is a parenthesized expression or a number
F → (E) | 1 | 2

9/30



Parsing example

E → T | E+T
T → F | T*F
F → (E) | 1 | 2

Parse tree for
2+(1+1+2*2)+1

E
E

E
T
F
2

+ T
F

( E
E

E
T
F
1

+ T
F
1

+ T
T
F
2

* F
2

)

+ T
F
1
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Disambiguation

Disambiguation is not always possible because

1. There exists inherently ambiguous languages
i.e. ambiguous no matter how you rewrite the grammar

2. There is no general procedure for disambiguation

In programming languages, ambiguity comes from the precedence
rules, and we can resolve like in the example

In English, ambiguity is sometimes a problem:

︸ ︷︷ ︸︷ ︸︸ ︷
I look at

︷ ︸︸ ︷
the dogwith one eye︸ ︷︷ ︸
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Parsing

S → 0S1 | 1S0S | T
T → S | ε

input: 0011

Is 0011 ∈ L?

If so, how to build a parse tree with a program?
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Parsing

S → 0S1 | 1S0S | T
T → S | ε

input: 0011

Try all derivations?

S

T
ε

S …

1S0S
…

10S10S …

0S1

0T1 …

01S0S1 …

00S11
00T11

0011 3

00S11
…

This is (part of) the tree of all derivations, not the parse tree
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Problems

1. Trying all derivations may take too long
2. If input is not in the language, parsing will never stop

Let’s tackle the 2nd problem
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When to stop

S → 0S1 | 1S0S | T
T → S | ε

Idea: Stop when
|derived string| > |input|

Problems:

S ⇒ 0S1⇒ 0T1⇒ 01

Derived string may shrink
because of “ε-productions”

S ⇒ T ⇒ S ⇒ T ⇒ . . .

Derviation may loop
because of “unit
productions”

Remove ε and unit productions

Note: we will remove all A → ε rules, except for start variable A
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Removing ε-productions

Goal: remove all A → ε rules for every non-start variable A

1 If start variable S
appears on RHS of a rule

Add a new start variable T
Add the rule T → S

2 For every rule A → ε where A
isn’t the (new) start variable
1. Remove the rule A → ε

2. If you see B → αAβ

Add a new rule B → αβ

S → ACD
A → a
B → ε

C → ED | ε
D → BC | b
E → b

D → C
S → AD | AC
D → ε

C → E
S → A

Removing → ε
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Eliminating ε-productions

2 For every A → ε rule where A is not the start variable

1. Remove the rule A → ε

2. If you see B → αAβ

Add a new rule B → αβ

Do 2. every time A appears

B → αAβAγ yields
B → αβAγ B → αAβγ

B → αβγ

B → A becomes B → ε

If B → ε was removed earlier,
don’t add it back
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Eliminating unit productions

A unit production is a production of the form

A → B

Grammar:

S → 0S1 | 1S0S | T
T → S | R | ε
R → 0SR

Unit production graph:

S T

R
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Removing unit productions

1 If there is a cycle of unit productions

A → B → · · · → C → A

delete it and replace everything with A
(any variable in the cycle)

S → 0S1 | 1S0S | T
T → S | R | ε
R → 0SR

S T

R

S → 0S1 | 1S0S
S → R | ε
R → 0SR

Replace T by S
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Removal of unit productions

2 replace any chain

A → B → · · · → C → α

by A → α, B → α, · · · , C → α

S → 0S1 | 1S0S
| R | ε

R → 0SR

S

R

S → 0S1 | 1S0S
| 0SR | ε

R → 0SR

Replace S → R → 0SR by S → 0SR, R → 0SR
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Recap

Problems:

1. Trying all derivations may take too long
2. If input is not in the language, parsing will never stop 3

Solution to problem 2:

1. Eliminate ε productions
2. Eliminate unit productions

Try all possible derivations but stop parsing when

|derived string| > |input|
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Example

S → 0S1 | 0S0S | T
T → S | 0

=⇒ S → 0S1 | 0S0S | 0

input: 0011

S

0S0S
00S0S0S too long

00S10S too long

000S
0000S0S too long

0000S1 too long
0000 7

0S1
00S0S1 too long
00S11 too long

001 7
0 7

Conclusion: 0011 /∈ L
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Preparations

A faster way to parse:

Cocke–Younger–Kasami algorithm

To use it we must perprocess the CFG as follows:

1. Eliminate ε productions
2. Eliminate unit productions
3. Convert CFG to Chomsky Normal Form
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Chomsky Normal Form

A CFG is in Chomsky Normal Form if
every production is of one of the following
• A → BC
(exactly two non-start variables on the right)

• A → x
(exactly one terminal on the right)

• S → ε

(ε-production only allowed for start variable)
where
A : variable
B and C : non-start variables
x : terminal
S : start variable

Noam Chomsky
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Convert to Chomsky Normal Form

A → BcDE =⇒
replace
terminals
with new
variables

A → BCDE
C → c

=⇒
break up
sequences
with new
variables

A → BX
X → CY
Y → DE
C → c
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Cocke–Younger–Kasami algorithm

S → AB | BC
A → BA | a
B → CC | b
C → AB | a

Input: x = baaba

let x[i, ℓ] = xixi+1 . . . xi+ℓ−1 b a a b a
i

ℓ

1 2 3 4 5
1
2
3
4
5

B A|C A|C B A|C

S |A B S |C S |A

For every substring x[i, ℓ], remember all variables R that derive x[i, ℓ]

Store in a table T[i, ℓ]
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Computing T[i, ℓ] for ℓ ⩾ 2

Example: to compute T[2, 4]

Try all possible ways to split x[2, 4] into two substrings

b a a b a

1
A|C B

2
B S |A

3
B A|C

Look up entries regarding shorter substrings previously computed

S → AB | BC
A → BA | a
B → CC | b
C → AB | a

T[2, 4] = S |A|C
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Cocke–Younger–Kasami algorithm

S → AB | BC
A → BA | a
B → CC | b
C → AB | a

Input: x = baaba

b a a b a

i

ℓ

1 2 3 4 5

1

2

3

4

5

B A |C A |C B A|C

AS | B S |C S |A

- B B

- S |A|C

S |A|C

Get parse tree by tracing back derivations
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