Undecidable Problems for CFGs

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2019

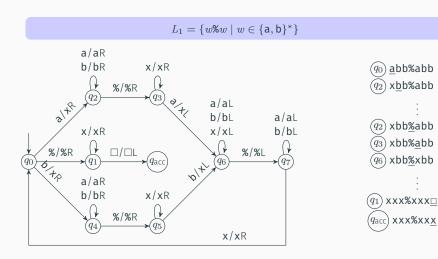
Chinese University of Hong Kong

Decidable vs undecidable

Decidable	Undecidable
DFA D accepts w	TM M accepts w
CFG G generates w	TM M halts on w
DFAs D and D^\prime accept same inputs	TM <i>M</i> accepts some input
	TM M and M' accept the same inputs

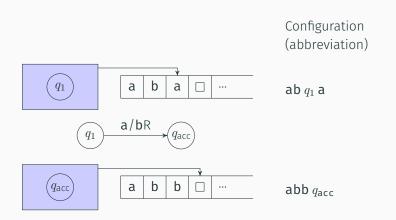
CFG G generates all inputs? CFG G is ambiguous?

Representing computation

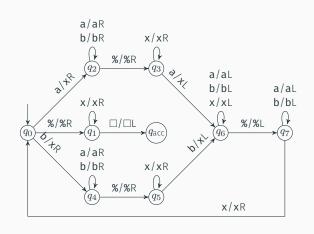


Configurations

A configuration consists of current state, head position, and tape contents



Computation history



computation history

Computation histories as strings

If M halts on w, the computation history of (M, w) is the sequence of configurations C_1, \ldots, C_k that M goes through on input w

 q_0 ab%ab x q_2 b%ab \vdots xx%xx q_1 xx%x $q_{\sf acc}$ x

#
$$\underbrace{q_0 ab\% ab}_{C_1}$$
$\underbrace{x q_1 b\% ab}_{C_2}$ #...# $\underbrace{x x\% x q_{acc}}_{C_k}$
computation history can be written as a st

The computation history can be written as a string h over alphabet $\Gamma \cup Q \cup \{\#\}$

accepting history: M accepts $w \Leftrightarrow q_{\text{acc}}$ appears in h rejecting history: M rejects $w \Leftrightarrow q_{\text{rej}}$ appears in h

Undecidable problems for CFGs

 $ALL_{CFG} = \{\langle G \rangle \mid G \text{ is a CFG that generates all strings}\}$

The language ALL_{CFG} is undecidable

We will argue that

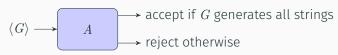
If $\mathsf{ALL}_\mathsf{CFG}$ can be decided, so can $\overline{A_\mathsf{TM}}$

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that rejects or loops on } w \}$

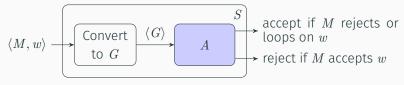
Undecidable problems for CFGs

Proof by contradiction

Suppose some Turing machine A decides $\mathsf{ALL}_\mathsf{CFG}$



We want to construct a Turing machine S that decides $\overline{A_{\mathrm{TM}}}$



G generates all strings if M rejects or loops on w G fails to generate some string if M accepts w

Undecidable problems for CFGs

G fails to generate some string \updownarrow M accepts w

The alphabet of G will be $\Gamma \cup Q \cup \{\#\}$

G will generate all strings except accepting computation history of (M,w)

First we construct a PDA P, then convert it to CFG G

Undecidablility via computation histories

candidate computation history h of (M,w) accept everything except accepting h

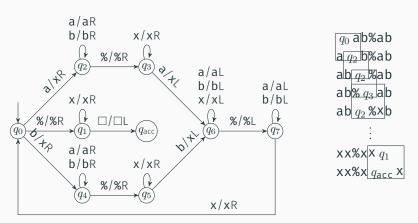
$$\#q_0$$
ab%ab $\#xq_1$ b%ab $\#...\#xx$ % $xq_{acc}x$ # \Rightarrow Reject

P =on input h (try to spot a mistake in h)

- If h is not of the form $\#w_1\#w_2\#...\#w_k\#$, accept
- · If $w_1 \neq q_0 w$ or w_k does not contain $q_{\sf acc}$, accept
- If two consecutive blocks $w_i \# w_{i+1}$ do not follow from the transitions of M, accept

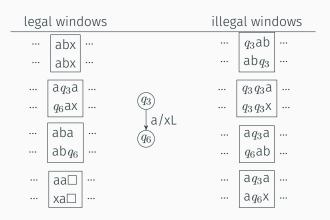
Otherwise, h must be an accepting history, reject

Computation is local



Changes between configurations always occur around the head

Legal and illegal transitions windows



Implementing P

If two consecutive blocks $w_i \# w_{i+1}$ do not follow from the transitions of M, accept

$$\#xb\%q_3ab$$

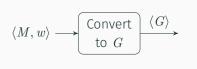
 $\#xbq_5\%xb$

- For every position of w_i :
 - Remember offset from # in w_i on stack
 - Remember first row of window in state
- After reaching the next #:
 - Pop offset from # from stack as you consume input
 - Remember second row of window in state
- If window is illegal, accept; Otherwise reject

The computation history method

 $\mathsf{ALL}_\mathsf{CFG} = \{\langle \mathit{G} \rangle \mid \mathit{G} \text{ is a CFG that generates all strings}\}$

If ALL_{CFG} can be decided, so can \overline{A}_{TM}



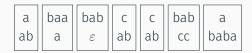
G accepts all strings except accepting computation history of (M,w)

We first construct a PDA P, then convert it to CFG G

Post Correspondence Problem

Input: A fixed set of tiles, each containing a pair of strings

Given an infinite supply of tiles from a particular set, can you match top and bottom?



Top and bottom are both abaababccbaba

Undecidability of PCP

$$PCP = \{\langle T \rangle \mid$$

T is a collection of tiles that contains a top-bottom match}

Next lecture we will show (using computation history method)

The language PCP is undecidable

 $AMB = \{ \langle G \rangle \mid G \text{ is an ambiguous CFG} \}$

The language AMB is undecidable

We will argue that

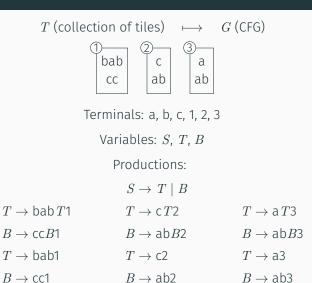
If AMB can be decided, then so can PCP

T (collection of tiles) \longmapsto G (CFG)

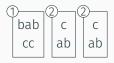
If T can be matched, then G is ambiguous

If T cannot be matched, then G is unambiguous

First, let's number the tiles



Each sequence of tiles gives a pair of derivations



$$S \Rightarrow T \Rightarrow \mathsf{bab}T1 \Rightarrow \mathsf{babc}T21 \Rightarrow \mathsf{babcc221}$$

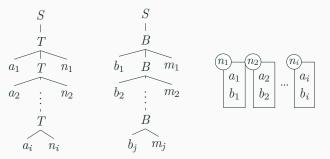
 $S \Rightarrow B \Rightarrow \mathsf{cc}B1 \Rightarrow \mathsf{ccab}B21 \Rightarrow \mathsf{ccabab221}$

If the tiles match, these two derive the same string (with different parse trees)

T (collection of tiles) \longmapsto G (CFG)

If T can be matched, then G is ambiguous \checkmark If T cannot be matched, then G is unambiguous \checkmark

If G is ambiguous, then the two parse trees will look like



Therefore $n_1 n_2 \dots n_i = m_1 m_2 \dots m_j$, and there is a match